2014 Rasor-Bareis examination problems

- 1. Prove that there does not exist a prime integer of the form 1001001...1001.
- **2.** Suppose |AB| = r, the radius of the circle. If $\angle OAB = \alpha$, find $\angle DOC$.
- **3.** Let a, b, and c be the lengths of the three sides of a triangle. Prove that

$$\frac{a}{b+c-a} + \frac{b}{a+c-b} + \frac{c}{a+b-c} \ge 3.$$

4. A cell is removed from a $2^n \times 2^n$ chessboard. Prove that the remaining part of the board can be tiled (that is, covered without overlapping) by *L*-shapes, as in the picture.

- **5.** For any seven real numbers y_1, \ldots, y_7 prove that there are two of them, y_i and y_j with $i \neq j$, satisfying $\left|\frac{y_i y_j}{1 + y_i y_j}\right| < \frac{1}{\sqrt{3}}$.
- 6. A rectangular pool table ACDF has size 2024×1111 . This table has six pockets located at the corners and at the midpoints of the longer sides, as indicated by A, B, C, D, E, F in the figure. A ball is hit from corner A at a 45° angle, and bounces off the edges until it falls into one of the pockets. Which pocket will it end in? Explain how you arrived at your answer. (Each pocket has diameter d < 1 and the ball has diameter < d; the ball moves at constant speed, making perfect bounces without friction or spin, until it hits a pocket.)

