2014 Rasor-Bareis examination problems

1. Prove that there does not exist a prime integer of the form $1001001 \ldots 1001$.
2. Suppose $|A B|=r$, the radius of the circle. If $\angle O A B=\alpha$, find $\angle D O C$.

3. Let a, b, and c be the lengths of the three sides of a triangle. Prove that

$$
\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c} \geq 3
$$

4. A cell is removed from a $2^{n} \times 2^{n}$ chessboard. Prove that the remaining part of the board can be tiled (that is, covered without overlapping) by L-shapes, as in the picture.

The board

The L-shapes
5. For any seven real numbers y_{1}, \ldots, y_{7} prove that there are two of them, y_{i} and y_{j} with $i \neq j$, satisfying $\left|\frac{y_{i}-y_{j}}{1+y_{i} y_{j}}\right|<\frac{1}{\sqrt{3}}$.
6. A rectangular pool table $A C D F$ has size 2024×1111. This table has six pockets located at the corners and at the midpoints of the longer sides, as indicated by A, B, C, D, E, F in the figure. A ball is hit from corner A at a 45° angle, and bounces off the edges until it falls into one of the pockets. Which pocket will it end in? Explain how you arrived at your answer. (Each
 pocket has diameter $d<1$ and the ball has diameter $<d$; the ball moves at constant speed, making perfect bounces without friction or spin, until it hits a pocket.)

