2017 Rasor-Bareis examination problems

- **1.** Let $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, ... be the Fibonacci numbers (so that for every n, $F_{n+2} = F_n + F_{n+1}$). Show that F_n divides F_{2n} for all $n \in \mathbb{N}$.
- 2. Let ABCD be a parallelogram, and let P, Q, R, S be the centers of the squares constructed on its sides. (See the picture.) Prove that PQRS is also a square.

- **3.** Prove that for each positive integer *n* there is a polynomial p_n of degree *n* with integer coefficients such that $2\cos(nx) = p_n(2\cos x)$ for all *x*. (For example, $p_1(y) = y$ and $p_2(y) = y^2 2$.)
- 4. Prove that there is an integer of the form 111...111 divisible by 2017.
- 5. If a set of integers is distributed around a circle, a *legal move* is to interchange some two neighboring integers m and n provided $|m n| \ge 3$.

Suppose that the integers $1, 2, \ldots, 2017$ are positioned in order clockwise around the circle. Is there a sequence of legal moves that reverses the order, so that after those moves are made the integers $1, 2, \ldots, 2017$ are positioned in order counterclockwise around the circle?

6. Evaluate
$$\int_{2}^{6} \frac{(10-x)^{2017}}{(10-x)^{2017} + (2+x)^{2017}} dx.$$

