2017 Rasor-Bareis examination problems

1. Let $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, \ldots$ be the Fibonacci numbers (so that for every n, $\left.F_{n+2}=F_{n}+F_{n+1}\right)$. Show that F_{n} divides $F_{2 n}$ for all $n \in \mathbb{N}$.
2. Let $A B C D$ be a parallelogram, and let P, Q, R, S be the centers of the squares constructed on its sides. (See the picture.) Prove that $P Q R S$ is also a square.

3. Prove that for each positive integer n there is a polynomial p_{n} of degree n with integer coefficients such that $2 \cos (n x)=p_{n}(2 \cos x)$ for all x. (For example, $p_{1}(y)=y$ and $p_{2}(y)=y^{2}-2$.)
4. Prove that there is an integer of the form $111 \ldots 111$ divisible by 2017.
5. If a set of integers is distributed around a circle, a legal move is to interchange some two neighboring integers m and n provided $|m-n| \geq 3$.

Suppose that the integers $1,2, \ldots, 2017$ are positioned in order clockwise around the circle. Is there a sequence of legal moves that reverses the order, so that after those moves are made the integers $1,2, \ldots, 2017$ are positioned in order counterclockwise around the circle?

6. Evaluate $\int_{2}^{6} \frac{(10-x)^{2017}}{(10-x)^{2017}+(2+x)^{2017}} d x$.

