2019 Rasor-Bareis examination problems

1. Let $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, \ldots$, be the Fibonacci sequence. Prove that for every $n \in \mathbb{N}, \frac{1}{F_{1} F_{3}}+\frac{1}{F_{2} F_{4}}+\cdots+\frac{1}{F_{n} F_{n+2}}<1$.
2. Suppose rational numbers a and b are such that the numbers $\sqrt[3]{a}+\sqrt[3]{b}$ and $\sqrt[3]{a b}$ are also rational. Prove that $\sqrt[3]{a}$ and $\sqrt[3]{b}$ are rational as well.
3. The integer points $(n, m), n, m \in \mathbb{Z}$, of the plane \mathbb{R}^{2} are colored with five colors so that every configuration of the form

$$
\{(n, m),(n-1, m),(n+1, m),(n, m-1),(n, m+1)\}, n, m \in \mathbb{Z}
$$

contains all five colors. Prove that every length 5 horizontal row $\{(n, m),(n+1, m),(n+2, m),(n+3, m),(n+4, m)\}, n, m \in \mathbb{Z}$ and every length 5 vertical column

$$
\{(n, m),(n, m+1),(n, m+2),(n, m+3),(n, m+4)\}, n \cdot m \in \mathbb{Z}
$$

also contain all five colors.
4. Evaluate $\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{2019} x}$.
5. Let $A B C D$ be a parallelogram and let P and Q be the midpoints of $B C$ and of $D C$ respectively. Is it possible that the rays $A P$ and $A Q$ trisect the angle $\angle B A D$ (meaning that $\angle B A P=\angle P A Q=\angle Q A D)$?

6. Prove that for all $n, m \in \mathbb{N}, \frac{1}{\sqrt[m]{1+n}}+\frac{1}{\sqrt[n]{1+m}} \geq 1$.

