2020 Rasor-Bareis examination problems

1. Prove that 17^{2020} cannot be represented as $m^{3}+n^{3}$ for positive integers m and n.
2. Prove that for any $x, y, z \in[0,1]$,

$$
\frac{x}{7+y^{3}+z^{3}}+\frac{y}{7+z^{3}+x^{3}}+\frac{z}{7+x^{3}+y^{3}} \leq \frac{1}{3}
$$

3. Prove that $\int_{0}^{\pi / 2} \cos (2020 x)(\cos x)^{2018} d x=0$.
4. Find all real polynomials $f(x)=x^{2020}+a_{2019} x^{2019}+\cdots+a_{1} x+a_{0}$ all of whose roots are real, and such that $|f(i)|=1$. (Here $i=\sqrt{-1}$.)
5. Let $A B C D$ be a convex quadrilateral of area 1 , and let O be a point inside it. Prove that

$$
|A O|+|B O|+|C O|+|D O| \geq 2 \sqrt{2}
$$

6. A 6×6 board is covered with eighteen 2×1 tiles, without gaps or overlaps. No matter how those tiles are arranged, prove that there always is a straight line that cuts across the whole board without cutting any tile.

