
WHAT IS... MONSKY’S THEOREM?

ANDREU FERRÉ MORAGUES

Abstract. We will see that if we try to dissect a square in n triangles of equal

area, then n must be even. This theorem was first proven by Monsky in 1970,

and we will see the proof he gave as a beautiful application of 2-adic numbers
that also relies on combinatorial topology (Sperner’s lemma).

1. Introduction

Suppose we have a square T in the plane and that we want to dissect it into n
triangles of equal area — equiareal triangulation of T—. This is very easy to do
if n is even: for instance, one can just divide the horizontal sides into n

2 segments
of equal length and draw a diagonal on each of the n

2 rectangles, as in the picture.
However, what if n is odd? As one may see for oneself, this already proves quite

Figure 1. Dissection of the unit square I2 for even n in the pro-
cess described above.

difficult to do for even small values of odd n. One may also be led to believe by
the nature of the question that this was already answered by the greek geometers
thousands of years ago.

Yet, this question was first thought about by Fred Richman (1965) at New Mexico
State, who was also surprised to be unable to find any reference for this. He was
writing a Master’s exam, and he wanted to include this question but could not solve
it. He asked the question in the Am. Math. Monthly, and Paul Monsky answered
it in 1970, based on initial work by John Thomas, who did it when the vertices of
the triangle are rational. We state it in the following theorem, whose proof will be
the object of this talk:

Theorem 1.1 (Monsky, 1970). If a square is dissected into triangles of equal areas,
then the number of triangles must be even.
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The method uses a combinatorial topological result, 2-adic valuations, and the
fact that those can be extended to R. These results are proven in the following sec-
tions, culminating in the proof given by Monsky. We conclude with some extensions
and further comments.

Remark 1.2. At present, cf. [3], no other proof of this fact is known, so this theorem
connects two apparently disjoint branches of math.

Figure 2. Dissection of the unit square I2 into an odd number of
triangles with almost equal areas.

2. Sperner’s lemma

Let us begin with the topological lemma of Sperner.
Consider a polygon P in the plane and a triangulation of P . Color each of the
vertices by one of the colors 1, 2, or 3.

Definition 2.1. We call an edge a 12-edge if its endpoints are colored by a 1 and
a 2 respectively.

Definition 2.2. We call a triangle complete if the colors of each of its vertices are
1, 2, 3 up to permutation.

Now we consider the result of Sperner, for whose proof we follow [4].

Lemma 2.3 (Sperner, 1928). Let P be a polygon whose vertices are colored by
three colors (1, 2, 3) let a triangulation be given for this polygon. Then the number
of complete triangles is equal to the number of 12-edges on the boundary of the
polygon (mod 2).

This lemma is used to find the existence of a complete triangle in the dissection
of the square.



WHAT IS... MONSKY’S THEOREM? 3

Proof: We use a double counting combinatorial argument. Put a dot on each
side of each 12-segment. We count the number of dots in the interior of the triangle
first by noticing that each interior segment contributes either 0 or 2 dots (i.e.,
depending on whether it is a 12-edge), while each boundary segment contributes
0 or 1 dots. Hence, the number of dots in the interior of the triangle is equal to
the number of 12-edges on the boundary of the polygon. Secondly, we count the

Figure 3. Depiction of the method of the proof of Sperner’s lemma.

number of dots in the interior of each triangle in the triangulation. By construction,
complete triangles contain one dot, while the rest contain an even number of dots.
Thus, the number of dots is equal to the number of complete triangles (mod 2),
which completes the proof. �

Remark 2.4. In [4] it is explained how Sperner’s lemma is a non-trivial result in
combinatorial topology, as it allows to prove Brouwer’s fixed point theorem (i.e.,
that for the n-dimensional unit ball in Rn, B, any continuous function f : B → B
has a fixed point), in the case where n = 2.

3. 2-adic valuations and absolute values

Now we give a brief introduction to valuations and absolute values on a field K,
a key ingredient in the proof of Monsky’s theorem.

Definition 3.1. Let (Γ,+, <) be an ordered abelian group. Following [2] we say
that a surjective map on a field K

v : K → Γ ∪ {∞}
is a valuation if for all x, y ∈ K we have

(1) v(x) =∞ implies x = 0,
(2) v(xy) = v(x) + v(y),
(3) v(x + y) ≥ min{v(x), v(y)}.

If Γ = {0}, then one has the so-called trivial valuation. As we will see, such a
valuation provides a non-archimedean absolute value on the field Q.

Working directly from axioms (1)-(3), we can deduce the following helpful facts
about valuations. Namely, for all x, y ∈ K,

v(1) = 0, v(x−1) = −v(x), v(−x) = v(x), and
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v(x) < v(y) implies v(x + y) = v(x).

Definition 3.2. We say that a subring Ov of a field K is a valuation ring if for
each x ∈ K×, either

x ∈ Ov or x−1 ∈ Ov.

Observe that if we have a valuation on K, then Ov := {x ∈ K : v(x) ≥ 0}
is a valuation ring of K. This valuation ring is a local ring with maximal ideal
M := {x ∈ K : v(x) > 0}.

In the proof of Chevalley’s theorem, we use the fact that a valuation on a field
K is the same as a valuation ring of K. The interested reader is referred to [2].

We now give an example of a valuation of Q in which we are interested and show
how it gives rise to the 2-adic non-archimedean absolute value.

Example 3.3. The 2-adic absolute value. We begin by defining the 2-adic absolute
value on Q in the following way. For each x ∈ Q×, write it uniquely as x = 2n a

b ,
where a, b are odd integers and n ∈ Z. Then put

v2 : Q→ Z ∪ {∞} given by v2(x) = v2

(
2n

a

b

)
:= n and v(0) =∞.

It is straightforward to check that v2 is a valuation on Q that is called discrete since
the valuation group is Z. In this case, the valuation ring is Z(2), the localization at
the prime ideal (2) of Z.

Notice that so far we have not used anything special about 2, and indeed, this
construction works for any prime number p, but 2 is the one we need for the proof
of Monsky’s theorem.

Recall that an absolute value on a field K is a function

| · | : K → R

with the following properties:

(1) |x| > 0 for all x ∈ K×, and |0| = 0.
(2) |xy| = |x||y| for all x, y ∈ K.
(3) |x+ y| ≤ |x|+ |y| for all x, y ∈ K. Moreover, we say that an absolute value

is non-archimedean if it satisfies the ultrametric inequality:
(4) |x + y| ≤ max{|x|, |y|} for all x, y ∈ K. Observe that this implies that if
|x| < |y|, then |x + y| = |y|.

Resuming our previous example, we define the 2-adic non-archimedean absolute
value on Q. Namely, put

| · |2: Q→ R defined by |x|2 := 2−v2(x), where v2(x) is as above.

Given the properties of v2, especially (3), it is easy to check that | · |2 is a non-
archimedean absolute value, because |n|2 ≤ 1 for all n ∈ Z. Observe that when
n ∈ Z, |n|2 < 1 if and only if n is even, which is the fact we need.

Finally, let us just comment that what we need for Monsky’s theorem is an ex-
tension of v2(x) to R, which allows us to define an extension of | · |2 to R in the
natural way, which we show shortly.



WHAT IS... MONSKY’S THEOREM? 5

4. Chevalley’s Theorem on extensions of valuations

In this section we provide a proof of the fact that we can extend the 2-adic
absolute value of Q to R. The proof of this fact is an easy corollary of Chevalley’s
theorem, which we prove in the following. As stated above, we will use the fact
that valuation on a field K and a valuation ring of K are interchangeable.

Theorem 4.1 (Chevalley). Let K be a field, R ⊆ K a subring, and p a prime ideal
of R. Then there exists a valuation ring O of K such that

R ⊆ O and M ∩R = p,

where M is the maximal ideal of O.

Proof: Recall that Rp stands for the localization of R at p. Consider the set

Σ := {(A, I) : Rp ⊆ A ⊆ K, pRp ⊆ I ( A,A a ring, I an ideal of A}.
We want to use Zorn’s lemma, so first observe that Σ 6= ∅ since (Rp, pRp) ∈ Σ.
Partially order Σ with ≤ by declaring (A1, I1) ≤ (A2, I2) iff A1 ⊆ A2 and I1 ⊆ I2.

Observe that each chain has an upper bound in (Σ,≤) simply by taking unions
for both rings and ideals at the same time, by the usual arguments. Then, we
apply Zorn’s lemma to get a maximal element in Σ, which we will call (O,M).
First notice that M is a maximal ideal, because otherwise, if M′ strictly contains
M, then (O,M′) contradicts the maximality of (O,M). Moreover, O is a local ring
since if there was another maximal ideal M′′ in O, then we could localize O at
M′′, and then the pair (OM′′ ,M′′OM′′) would again contradict the maximality of
(O,M).

Furthermore, since by construction R ⊆ Rp ⊆ O, we have that M ∩ Rp = pRp,
because pRp is the maximal ideal of Rp. This implies that M∩R = p by standard
facts about localizations of rings at a prime ideal. So it only remains to show that
O is a valuation ring, since we already showed it is local.

For the sake of contradiction, suppose O is not a valuation ring, so that there exists
x ∈ K× such that x, x−1 /∈ O. Since this is the case, O ( O[x],O[x−1]. Again
by maximality of (O,M) we must have that M[x] = O[x] and M[x−1] = O[x−1].
Therefore, we can find a0, . . . , an, b0, . . . , bm ∈M such that

1 =

n∑
i=0

aix
i and 1 =

m∑
i=0

bix
−i

with n,m minimal. Suppose that m ≤ n. Since b0 ∈M and O is local, we have
m∑
i=1

bix
−i = 1− b0 ∈ O× = O \M.

Hence,

1 =

m∑
i=1

cix
−i, where ci =

bi
1− b0

∈M.

Multiplying this equation by xn yields

xn =

m∑
i=1

cix
n−i.
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But then, using our hypothesis on the ai’s, we can write

1 =

n∑
i=0

aix
i =

n−1∑
i=0

aix
i +

m∑
i=1

cianx
n−i,

so since m ≤ n, we get a contradiction with the minimality of n. The case n ≤ m
is similar. �

Let K2/K1 be a field extension, and O1 ⊆ K1, O2 ⊆ K2 be valuation rings.
We say that O2 is a prolongation of O1 if O2 ∩ K1 = O1. This is denoted by
(K1,O1) ⊆ (K2,O2). We can also refer to this by saying O2 is an extension of O1.

Let (K1,O1) ⊆ (K2,O2), and let M1, M2 be the maximal ideals of O1 and O2

respectively. Then we have

M2 ∩K1 = M2 ∩ O1 = M1,

O×2 ∩K1 = O×2 ∩ O1 = O×1 .

This holds because both rings are valuation rings. We also have that if K1 ⊆ K2 is
a field extension and O2 is a valuation ring of K2, one also sees that O1 = O2 ∩K1

is a valuation ring of K1 such that (K1,O1) ⊆ (K2,O2). With this result we can
now prove the promised extension of a valuation in the following

Theorem 4.2. Let K2/K1 be a field extension, and let O1 ⊆ K1 be a valuation
ring. Then there is an extension of O2 of O1 in K2.

Proof: Since O1 is a subring of K2, by Chevalley’s Theorem there exists a
valuation ring O2 of K2 with O1 ⊆ O2 and M2 ∩ O1 = M1 for their respective
maximal ideals. Finally, since O2 ∩K1 and O1 are valuation rings with the same
maximal ideal, by the above considerations, they must coincide: one contains the
other and they are both valuation rings. �

From this follows the claim we made about extending the 2-adic valuation of Q
to R, so the same goes for the 2-adic absolute value, as we will use in the proof of
Monsky’s theorem in the next section.

5. Proof of Monsky’s Theorem

Now that we have all the tools required, we can proceed to give the proof of
Monsky’s theorem. Fix an extension of the 2-adic absolute value on R, which by
abuse of notation we call | · |2, which we know to exist by Chevalley’s theorem.
Next, partition R2 in the following three sets, which we can view as a coloring with
colors 1, 2, and 3:

S1 := {(x, y) : |x|2 < 1, |y|2 < 1},

S2 := {(x, y) : |x|2 ≥ 1, |x|2 ≥ |y|2},

S3 := {(x, y) : |y|2 ≥ 1, |y|2 > |x|2}.
To check that they are indeed a partition of R2, a sketch may help. Moreover, by
axiom (4) of a non-archimedean absolute value we observe that points with colors
2 and 3 are translation-invariant under points with color 1. We proceed with a
lemma on complete triangles in R2 for this coloring:
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Lemma 5.1. Let T be a triangle in R2 complete with respect to the above coloring.
Then its area A satisfies

|A|2 > 1.

Proof: Since the coloring is translation-invariant, we may move our triangle
T to the origin (another point of type 1), which is nothing but a translation by
a point of type 1, meaning that the triangle is still complete, and its area is un-
affected. Therefore, without loss of generality, suppose that T has vertices (0, 0),
(x2, y2), and (x3, y3), where the labels indicate the coloring of each vertex (and the
origin is of color 1 as mentioned).

Then we can write A as a determinant with the following formula:

A =
1

2

∣∣∣∣x2 x3

y2 y3

∣∣∣∣ =
x2y3 − x3y2

2
.

But now, by our choice of coloring we have |x2|2 ≥ |y2|2 and |y3|2 > |x3|2, so that
|x2y3|2 > |x3y2|2. Consequently,

|A|2 =

∣∣∣∣12
∣∣∣∣
2

|x2y3 − x3y2|2 = 2|x2y3|2 = 2|x2|2|y3|2 ≥ 2,

which gives the result. �

Finally, we can prove Monsky’s theorem.

Theorem 5.2 (Monsky, 1970). Let S be a square in R2, and suppose that we dissect
it into m triangles of equal area. Then m is even.

Proof: Without loss of generality, we may translate and dilate the square so
that S is [0, 1] × [0, 1]. Let T be a triangulation of S into m triangles with equal
area. Color their vertices according to the partition given above (S1, S2 and S3).
Notice that on the boundary of the square bd(S), 12-edges only occur on the edge
connecting (0, 0) and (1, 0). This holds because on the edge (0, 0)− (0, 1) we have
no points with color 2, as |x|2 = 0 always. On the edge (1, 0) − (1, 1) we have no
points with color 1, because |x|2 = 1 always, and on the edge (0, 1)− (1, 1), we have
no points of color 1, because |y|2 = 1 always.

Moreover, on the (0, 0)−(1, 0) edge there are no vertices of color 3 because |y|2 = 0,
so only 12-edges occur on this edge. Moreover, since (0, 0) has color 1 and (1, 0)
has color 2, we have that the number of 12-edges is given by the number of changes
from 1 to 2. It follows that in this configuration, this number must be odd, so there
is an odd number of 12-edges on bd(S).

Therefore, by Sperner’s lemma applied to the square S, there must be a com-
plete triangle in the dissection T . By the previous lemma, we have that its area A
is such that |A|2 > 1, but the area of S is mA = 1. Since | · |2 is multiplicative,
we must have |m|2 < 1, but since m is an integer, this means that m is even. This
concludes the proof. �

Remark 5.3. In Monsky’s original paper, a strengthening of this result is proven.
Namely in [1] it is shown that if [0, 1] × [0, 1] is dissected into m triangles Ti with
area of Ti equal to ai, then there is a polynomial f ∈ Z[x1, . . . , xm] such that
f(a1, . . . , am) = 1

2 .
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6. Further extensions and comments

We finish by remarking that in [3] one can find a proof that is not as noncon-
structive as the one we followed in [4]. Moreover, from [4] we have the following
results of a similar nature:

(1) Partitioning the n-dimensional cube into simplices yields that the number
of simplices must be a multiple of n!.

(2) Partitioning regular n-gons for n > 4 implies that the number of triangles
is divisble by n.

(3) In 1990 Monsky showed that for a centrally symmetric polygon, the answer
is the same as for the square.

(4) There are some polygons that cannot be dissected into triangles of equal
areas. An example is the trapezoid with vertices (0, 0), (0, 1), (1, 0) and
(a, 1), where a is not algebraic.

The same article [4], discusses related open problems.
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