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Abstract

While Fibonacci numbers can quite easily be classified as a complete se-
quence, they have the unusual property that a particular explicitly defined
subset of such sequences is complete and also gives unique representations of
natural numbers. This can be extended to all integers via the ”nega-Fibonacci”
numbers. Further, an unusual binary operation on the natural numbers may
be defined and proven to be associative.

1 Introduction and Background

Edouard Zeckendorf (1901-1983) was a Belgian mathematician (and doctor and
army officer). He published [4] in 1972, though his work was not original, in accor-
dance with Stigler’s Law of Eponymy. 20 years prior to Zeckendorf’s publication,
Dutch mathematician Gerrit Lekkerkerker had already published [2] using similar
techniques.

2 Preliminary Results

Definition 1: The n-th Fibonacci number Fn is defined recursively by the equation
Fn = Fn−1 + Fn−2, where F0 = 0 and F1 = 1.

Note: We will say that Fibonacci numbers Fn and Fm are consecutive when
n = m± 1, rather than when Fn = Fm ± 1.

Lemma 1: For any increasing sequence (ci)
k
i=0 such that ci ≥ 2 and ci+1 > ci + 1

for i ≥ 0, we have

k∑
i=0

Fci < Fck+1.

Proof. We note that, taking F3 to be the largest term, the largest sum of noncon-
secutive Fibonacci numbers is

F3 + F1 = 3 + 1 = 4 < 5 = F4.
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Assume that sums of nonconsecutive Fibonacci numbers up to Fj−1 are all less that
Fj . Such a sum up to Fj will contain no Fj−1, and will thus be a sum of Fj and a
nonconsecutive sum of Fibonacci numbers up Fj−2, which will be smaller than Fj−1
by the inductive hypothesis. Thus, for any sequence (ci) as described above where
ck = j, we have,

k∑
i=0

Fci = Fj +
k−1∑
i=0

Fci < Fj + Fj−1 = Fj+1.

This proves the result for all j ∈ N inductively.

Corollary 1: Any sum of Fibonacci numbers up to Fn is less than Fn+2.

Proof. Let n = ck. Using the lemma after splitting the sum into sum of even and
odd index Fibonacci numbers, we see that, if ce is the largest even index and co the
largest odd,

k∑
i=0

Fci =
∑
ci odd

Fci +
∑

ci even

Fci < Fco+1 + Fce+1 ≤ Fn + Fn−1 = Fn+2.

This could have easily be proven directly with induction, but is shorter with the
lemma, which handles the induction for us.

3 Zeckendorf’s Theorem

Theorem 1: (Zeckendorf’s Theorem) Let n be a positive integer. Then there is a
unique increasing sequence (ci)

k
i=0 such that ci ≥ 2 and ci+1 > ci + 1 for i ≥ 0, and

that

n =

k∑
i=0

Fci .

We will call such a sum the Zeckendorf representation for n.

Proof. We begin with a proof of existence. We see that 1 = F2, 2 = F3, 3 = F4,
and 4 = F2 + F4 = 1 + 3. Suppose now that we can find such a representation for
all positive integers up to k. If k + 1 is a Fibonacci number, then that provides the
Zeckendorf representation. If k + 1 is not a Fibonacci number, then ∃j ∈ N such
that Fj < k+1 < Fj+1. Define a = k+1−Fj , so a ≤ k, meaning a has a Zeckendorf
representation by hypothesis. We also note that

Fj + a = k + 1 < Fj+1 = Fj + Fj−1

a < Fj−1.

2



Thus, the Zeckendorf representation of a does not contain a Fj−1 term, so k + 1 =
Fj + a will yield a Zeckendorf representation for k+ 1. This proves the existence of
the Zeckendorf representation for positive integers by induction.

We will now prove uniqueness. Let n be a positive integer with two nonempty
sets of terms S and T which form Zeckendorf representations of n. Let S′ = S \ T
and T ′ = T \ S. Since both sets lost the same common elements, we still have∑

x∈S
x−

∑
a∈S∩T

a =
∑
y∈T

y −
∑

b∈S∩T
b

∑
x∈S′

x =
∑
y∈T ′

y.

Thus, if either S′ or T ′ is empty, it will yield a sum of 0. Since all terms are non-
negative, the other sum, equaling 0, must also be empty, meaning that S′ = T ′ = ∅,
so S = S ∩ T = T .

Let us now assume that both sets S′ and T ′ are nonempty. Let Fs = maxS′ and
Ft = maxT ′. Since S′ 6= T ′, we may say without loss of generality that Fs < Ft.
By the lemma, we may say that∑

x∈S′
x < Fs+1 ≤ Ft.

Since the sums over S′ and T ′ are non-negative and equal, this is a contradiction,
so S′ = T ′ = ∅, and S = T .

While uniqueness can perhaps be more easily directly proven, this contradiction
is more in the traditional spirit.

4 Fibonacci Multiplication

Definition 2: We will define the operation of Fibonacci multiplication ◦ : N2 → N
as follows: Given two numbers with Zeckendorf representations

a =

k∑
i=0

Fci , b =

l∑
j=0

Fdj ,

we will define

a ◦ b =

k∑
i=0

l∑
j=0

Fci+dj .

Theorem 2: (N, ◦) forms a (commutative) semigroup.

3



Proving commutativity of ◦ over N is a simple rearrangement of finite sums.
Were the circle product to always immediately yield a Zeckendorf representation
of the product, associativity would be easy, but this can quickly be seen to not be
the case. Donald Knuth (1938-) published his proof of associativity of Fibonacci
multiplication in 1988 in [1]. Our proof will follow his technique, which rephrases
the problem through a Fibonacci variation on the usual power-based radix notation.
Essentially, when we concatenate digits this way, we mean

n = (dsds−1 . . . d1d0)F =

s∑
i=0

diFi.

It is reasonably clear to see the relation to Zeckendorf representations.

Proposition 1: We have that (dsds−1 . . . d1d0)F is a Zeckendorf representation pre-
cisely when

(Z1) di = 0 or di = 1, ∀i ∈ N,

(Z2) didi+1 = 0, ∀i ∈ N,

(Z3) d0 = d1 = 0,

are all satisfied.

A simple process to add 1 in radix-F gives another existence proof for Zeck-
endorf’s Theorem:

Theorem 3: Every positive integer has a Zeckendorf representation.

Proof. We first note that 1 = (100)F satisfies (Z1-3). We see that, if we have a
Zeckendorf representation of n, then

n = (ds . . . d2d1d0)F

= (ds . . . d200)F

n+ 1 = (ds . . . d211)F

= (ds . . . d210)F .

To turn our representation of n + 1 into a Zeckendorf representation, we may re-
peatedly change the strings of digits via the following replacement rule:

0 1 1→ 1 0 0

which preserves the value of (ds . . . d2d1d0)F . If d2 = 1 for n + 1, then choose
d1 = 1 and d0 = 0. Otherwise, choose d1 = d0 = 1. We will never see the string
(. . . 111 . . .)F thanks to (Z2) for n. We notice that the rule clearly preserves (Z1),
and once no more iterations of the replacement can be made, we will have (Z2). The
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first replacement immediately handles (Z3). The last issue is a potential cycle under
the replacement, but this is impossible, since the replacement increases the value of
(ds . . . d2d1d0)2 with each iteration, so the process must eventually terminate, as a
number has only finitely many representations in radix-F . Hence, we will eventually
have (Z1), (Z2), and (Z3), and thus, a Zeckendorf representation for n+ 1.

We may further generalize the addition of two numbers in radix notation. To
perform such an addition, we may simply add two numbers digit-wise. To take any
arbitrary representation (ds . . . d1d0)F and turn it into a Zeckendorf representation,
we may carry out the value-preserving replacements

0 (d+ 1) (e+ 1)→ 1 d e (1)

0 (d+ 2) 0 e→ 1 d 0 (e+ 1) (2)

from left to right until we can no longer do so.

Lemma 2: If di ≤ 2 for i ≥ 2 and d1 = d2 = 0, then these two replacement rules
may be used to turn (ds . . . d1d0)F into (d′t . . . d

′
2d
′
1d
′
0)F which satisfies (Z1) and (Z2).

Proof. We have vacuous truth when s ≤ 1. When s > 1, we may apply the carrying
process to (ds . . . d1d0)F repeatedly, and since both the rules (1) and (2) increase
(ds . . . d1d0)2, the process must terminate. Since (1) can’t be applied, we must
have (Z2). Since (2) cannot be applied, we must have (Z1). This will yield the
representation (d′t . . . d

′
2d
′
1d
′
0)F .

The last remaining issue is to ensure (Z3). If an addition does not ever “carry
down” into d1 or d0 via (2), we will call it clean. Let n be the number of trailing
zeroes in the radix-F notation for the Zeckendorf representation of n.

Lemma 3: We have m+ n ≥ min(m,n)− 2 for m,n ∈ N.

Proof. Carrying out the process in lemma 2 can be seen to only move into the first
two trailing zeroes, if the process is shifted left accordingly.

It is fairly plain to see that circle multiplication with radix-F notation is totally
analogous to ordinary multiplication with binary. When performing a multiplication

a ◦ b =
k∑

i=0

l∑
j=0

Fci+dj =
l∑

j=0

a ◦ Fdj ,

we will call each a ◦ Fdj a partial product of a ◦ b. A quick exercise is to use
radix-F notation to show that circle multiplication is monotonic, namely, that, for
l,m, n ∈ N,

l < m =⇒ l ◦ n < m ◦ n.
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Lemma 4: Radix-F addition of the partial products of m ◦ n is clean.

Proof. We may observe that, for the partial product m ◦ Fk, we have

m ◦ Fk = m+ k ≥ k + 2.

Let n =
∑r

c=0 Fkc be the Zeckendorf representation. Since kc+1 ≥ kc + 2, we see
that, by lemma 3

m ◦ Fkr +m ◦ Fkr−1 ≥ min
(
m ◦ Fkr ,m ◦ Fkr−1

)
− 2

≥ kr−1 + 2− 2

= kr−1
r∑

c=i

m ◦ Fkc ≥ min

(
r∑

c=i+1

m ◦ Fkc ,m ◦ Fki

)
− 2

≥ ki + 2− 2

= ki.

Repeatedly applying this process,

m ◦ n =

q∑
b=0

r∑
c=0

Fjb+kc =

r∑
c=0

m ◦ Fkc ≥ k0.

Since k1 ≥ 2, we see that our addition was clean.

Theorem 4: Define the Zeckendorf representations

l =

p∑
a=0

Fia , m =

q∑
b=0

Fjb , n =
r∑

c=0

Fkc .

Then we have

(l ◦m) ◦ n =

p∑
a=0

q∑
b=0

r∑
c=0

Fia+jb+kc .

Proof. We may cleanly obtain the partial products of l ◦m shifted left k, summing
(l ◦ Fj) ◦ Fk. This gives

(l ◦m) ◦ Fk =

p∑
a=0

q∑
b=0

Fia+jb+k.

and we get the desired result by cleanly summing over k via lemma 4.
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This proves Theorem 2 by the symmetry of (l ◦ m) ◦ n. The proof of lemma
4 can be extended to make the resulting sum from Theorem 4 clean, allowing for
arbitrary groupings of arbitrarily many Fibonacci products.

Knuth claimed that his work was inspired by [3]. In their paper, Porta and
Stolarksy proved the associativity of ∗ : N2 → N, defining

m ∗ n = mn+ bφmcbφnc,

where φ = 1+
√
5

2 is the golden mean. Thus, (N, ◦) and (N, ∗) both form commutative
semigroups.

5 Other Results

As it turns out, we can extend Zeckendorf’s Theorem to all integers using the so-
called “nega-Fibonacci” numbers defined on negative indices by

Fn−2 = Fn − Fn−1

F−n = (−1)n+1Fn,

and all integers can be represented uniquely by a sum of nega-Fibonacci numbers,
taking 0 to be the empty sum.

One question that arises fairly naturally is that of distributivity of circle multi-
plication over the usual addition. This is tantalizing due to the resulting semiring
structure of (N,+, ◦) this would imply. However, this would mean that

m ◦ n = (1 + · · ·+ 1︸ ︷︷ ︸
m

) ◦ (1 + · · ·+ 1︸ ︷︷ ︸
n

) = (1 ◦ 1)mn = 3mn

with concatenation representing the usual multiplication. The fact that 5 ◦ 13 =
F5◦F7 = F12 = 144 6= 3(5)13 = 143 shows it not to be the case (though distributivity
can be shown to hold over clean addition). Knuth actually showed that m ◦ n ∼√

5mn for large m and n. He also mentioned that Porta and Stolarsky found that
m ∗ n ∼ 3.62mn.
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