What is Zeckendorf's Theorem?

Nik Henderson

July 23, 2016

Abstract

While Fibonacci numbers can quite easily be classified as a complete sequence, they have the unusual property that a particular explicitly defined subset of such sequences is complete and also gives unique representations of natural numbers. This can be extended to all integers via the "nega-Fibonacci" numbers. Further, an unusual binary operation on the natural numbers may be defined and proven to be associative.

1 Introduction and Background

Edouard Zeckendorf (1901-1983) was a Belgian mathematician (and doctor and army officer). He published [4] in 1972, though his work was not original, in accordance with Stigler's Law of Eponymy. 20 years prior to Zeckendorf's publication, Dutch mathematician Gerrit Lekkerkerker had already published [2] using similar techniques.

2 Preliminary Results

Definition 1: The n-th Fibonacci number F_{n} is defined recursively by the equation $F_{n}=F_{n-1}+F_{n-2}$, where $F_{0}=0$ and $F_{1}=1$.

Note: We will say that Fibonacci numbers F_{n} and F_{m} are consecutive when $n=m \pm 1$, rather than when $F_{n}=F_{m} \pm 1$.

Lemma 1: For any increasing sequence $\left(c_{i}\right)_{i=0}^{k}$ such that $c_{i} \geq 2$ and $c_{i+1}>c_{i}+1$ for $i \geq 0$, we have

$$
\sum_{i=0}^{k} F_{c_{i}}<F_{c_{k}+1} .
$$

Proof. We note that, taking F_{3} to be the largest term, the largest sum of nonconsecutive Fibonacci numbers is

$$
F_{3}+F_{1}=3+1=4<5=F_{4} .
$$

Assume that sums of nonconsecutive Fibonacci numbers up to F_{j-1} are all less that F_{j}. Such a sum up to F_{j} will contain no F_{j-1}, and will thus be a sum of F_{j} and a nonconsecutive sum of Fibonacci numbers up F_{j-2}, which will be smaller than F_{j-1} by the inductive hypothesis. Thus, for any sequence $\left(c_{i}\right)$ as described above where $c_{k}=j$, we have,

$$
\sum_{i=0}^{k} F_{c_{i}}=F_{j}+\sum_{i=0}^{k-1} F_{c_{i}}<F_{j}+F_{j-1}=F_{j+1}
$$

This proves the result for all $j \in \mathbb{N}$ inductively.
Corollary 1: Any sum of Fibonacci numbers up to F_{n} is less than F_{n+2}.
Proof. Let $n=c_{k}$. Using the lemma after splitting the sum into sum of even and odd index Fibonacci numbers, we see that, if c_{e} is the largest even index and c_{o} the largest odd,

$$
\sum_{i=0}^{k} F_{c_{i}}=\sum_{c_{i} \text { odd }} F_{c_{i}}+\sum_{c_{i} \text { even }} F_{c_{i}}<F_{c_{o}+1}+F_{c_{e}+1} \leq F_{n}+F_{n-1}=F_{n+2}
$$

This could have easily be proven directly with induction, but is shorter with the lemma, which handles the induction for us.

3 Zeckendorf's Theorem

Theorem 1: (Zeckendorf's Theorem) Let n be a positive integer. Then there is a unique increasing sequence $\left(c_{i}\right)_{i=0}^{k}$ such that $c_{i} \geq 2$ and $c_{i+1}>c_{i}+1$ for $i \geq 0$, and that

$$
n=\sum_{i=0}^{k} F_{c_{i}}
$$

We will call such a sum the Zeckendorf representation for n.
Proof. We begin with a proof of existence. We see that $1=F_{2}, 2=F_{3}, 3=F_{4}$, and $4=F_{2}+F_{4}=1+3$. Suppose now that we can find such a representation for all positive integers up to k. If $k+1$ is a Fibonacci number, then that provides the Zeckendorf representation. If $k+1$ is not a Fibonacci number, then $\exists j \in \mathbb{N}$ such that $F_{j}<k+1<F_{j+1}$. Define $a=k+1-F_{j}$, so $a \leq k$, meaning a has a Zeckendorf representation by hypothesis. We also note that

$$
\begin{aligned}
F_{j}+a=k+1 & <F_{j+1}=F_{j}+F_{j-1} \\
a & <F_{j-1} .
\end{aligned}
$$

Thus, the Zeckendorf representation of a does not contain a F_{j-1} term, so $k+1=$ $F_{j}+a$ will yield a Zeckendorf representation for $k+1$. This proves the existence of the Zeckendorf representation for positive integers by induction.

We will now prove uniqueness. Let n be a positive integer with two nonempty sets of terms S and T which form Zeckendorf representations of n. Let $S^{\prime}=S \backslash T$ and $T^{\prime}=T \backslash S$. Since both sets lost the same common elements, we still have

$$
\begin{aligned}
\sum_{x \in S} x-\sum_{a \in S \cap T} a=\sum_{y \in T} y-\sum_{b \in S \cap T} b \\
\sum_{x \in S^{\prime}} x=\sum_{y \in T^{\prime}} y .
\end{aligned}
$$

Thus, if either S^{\prime} or T^{\prime} is empty, it will yield a sum of 0 . Since all terms are nonnegative, the other sum, equaling 0 , must also be empty, meaning that $S^{\prime}=T^{\prime}=\varnothing$, so $S=S \cap T=T$.

Let us now assume that both sets S^{\prime} and T^{\prime} are nonempty. Let $F_{s}=\max S^{\prime}$ and $F_{t}=\max T^{\prime}$. Since $S^{\prime} \neq T^{\prime}$, we may say without loss of generality that $F_{s}<F_{t}$. By the lemma, we may say that

$$
\sum_{x \in S^{\prime}} x<F_{s+1} \leq F_{t} .
$$

Since the sums over S^{\prime} and T^{\prime} are non-negative and equal, this is a contradiction, so $S^{\prime}=T^{\prime}=\varnothing$, and $S=T$.

While uniqueness can perhaps be more easily directly proven, this contradiction is more in the traditional spirit.

4 Fibonacci Multiplication

Definition 2: We will define the operation of Fibonacci multiplication $\circ: \mathbb{N}^{2} \rightarrow \mathbb{N}$ as follows: Given two numbers with Zeckendorf representations

$$
a=\sum_{i=0}^{k} F_{c_{i}}, \quad b=\sum_{j=0}^{l} F_{d_{j}},
$$

we will define

$$
a \circ b=\sum_{i=0}^{k} \sum_{j=0}^{l} F_{c_{i}+d_{j}} .
$$

Theorem 2: (\mathbb{N}, \circ) forms a (commutative) semigroup.

Proving commutativity of \circ over \mathbb{N} is a simple rearrangement of finite sums. Were the circle product to always immediately yield a Zeckendorf representation of the product, associativity would be easy, but this can quickly be seen to not be the case. Donald Knuth (1938-) published his proof of associativity of Fibonacci multiplication in 1988 in [1]. Our proof will follow his technique, which rephrases the problem through a Fibonacci variation on the usual power-based radix notation. Essentially, when we concatenate digits this way, we mean

$$
n=\left(d_{s} d_{s-1} \ldots d_{1} d_{0}\right)_{F}=\sum_{i=0}^{s} d_{i} F_{i}
$$

It is reasonably clear to see the relation to Zeckendorf representations.
Proposition 1: We have that $\left(d_{s} d_{s-1} \ldots d_{1} d_{0}\right)_{F}$ is a Zeckendorf representation precisely when
(Z1) $d_{i}=0$ or $d_{i}=1, \forall i \in \mathbb{N}$,
$(\mathrm{Z} 2) d_{i} d_{i+1}=0, \forall i \in \mathbb{N}$,
(Z3) $d_{0}=d_{1}=0$,
are all satisfied.
A simple process to add 1 in radix- F gives another existence proof for Zeckendorf's Theorem:

Theorem 3: Every positive integer has a Zeckendorf representation.
Proof. We first note that $1=(100)_{F}$ satisfies (Z1-3). We see that, if we have a Zeckendorf representation of n, then

$$
\begin{aligned}
n & =\left(d_{s} \ldots d_{2} d_{1} d_{0}\right)_{F} \\
& =\left(d_{s} \ldots d_{2} 00\right)_{F} \\
n+1 & =\left(d_{s} \ldots d_{2} 11\right)_{F} \\
& =\left(d_{s} \ldots d_{2} 10\right)_{F} .
\end{aligned}
$$

To turn our representation of $n+1$ into a Zeckendorf representation, we may repeatedly change the strings of digits via the following replacement rule:

$$
011 \rightarrow 100
$$

which preserves the value of $\left(d_{s} \ldots d_{2} d_{1} d_{0}\right)_{F}$. If $d_{2}=1$ for $n+1$, then choose $d_{1}=1$ and $d_{0}=0$. Otherwise, choose $d_{1}=d_{0}=1$. We will never see the string $(\ldots 111 \ldots)_{F}$ thanks to $(\mathrm{Z} 2)$ for n. We notice that the rule clearly preserves $(\mathrm{Z} 1)$, and once no more iterations of the replacement can be made, we will have (Z2). The
first replacement immediately handles (Z3). The last issue is a potential cycle under the replacement, but this is impossible, since the replacement increases the value of $\left(d_{s} \ldots d_{2} d_{1} d_{0}\right)_{2}$ with each iteration, so the process must eventually terminate, as a number has only finitely many representations in radix- F. Hence, we will eventually have (Z1), (Z2), and (Z3), and thus, a Zeckendorf representation for $n+1$.

We may further generalize the addition of two numbers in radix notation. To perform such an addition, we may simply add two numbers digit-wise. To take any arbitrary representation $\left(d_{s} \ldots d_{1} d_{0}\right)_{F}$ and turn it into a Zeckendorf representation, we may carry out the value-preserving replacements

$$
\begin{align*}
0(d+1)(e+1) & \rightarrow 1 d e \tag{1}\\
0(d+2) 0 e & \rightarrow 1 d 0(e+1) \tag{2}
\end{align*}
$$

from left to right until we can no longer do so.
Lemma 2: If $d_{i} \leq 2$ for $i \geq 2$ and $d_{1}=d_{2}=0$, then these two replacement rules may be used to turn $\left(d_{s} \ldots d_{1} d_{0}\right)_{F}$ into $\left(d_{t}^{\prime} \ldots d_{2}^{\prime} d_{1}^{\prime} d_{0}^{\prime}\right)_{F}$ which satisfies (Z1) and (Z2).

Proof. We have vacuous truth when $s \leq 1$. When $s>1$, we may apply the carrying process to $\left(d_{s} \ldots d_{1} d_{0}\right)_{F}$ repeatedly, and since both the rules (1) and (2) increase $\left(d_{s} \ldots d_{1} d_{0}\right)_{2}$, the process must terminate. Since (1) can't be applied, we must have (Z2). Since (2) cannot be applied, we must have (Z1). This will yield the representation $\left(d_{t}^{\prime} \ldots d_{2}^{\prime} d_{1}^{\prime} d_{0}^{\prime}\right)_{F}$.

The last remaining issue is to ensure (Z3). If an addition does not ever "carry down" into d_{1} or d_{0} via (2), we will call it clean. Let \bar{n} be the number of trailing zeroes in the radix- F notation for the Zeckendorf representation of n.

Lemma 3: We have $\overline{m+n} \geq \min (\bar{m}, \bar{n})-2$ for $m, n \in \mathbb{N}$.
Proof. Carrying out the process in lemma 2 can be seen to only move into the first two trailing zeroes, if the process is shifted left accordingly.

It is fairly plain to see that circle multiplication with radix- F notation is totally analogous to ordinary multiplication with binary. When performing a multiplication

$$
a \circ b=\sum_{i=0}^{k} \sum_{j=0}^{l} F_{c_{i}+d_{j}}=\sum_{j=0}^{l} a \circ F_{d_{j}}
$$

we will call each $a \circ F_{d_{j}}$ a partial product of $a \circ b$. A quick exercise is to use radix- F notation to show that circle multiplication is monotonic, namely, that, for $l, m, n \in \mathbb{N}$,

$$
l<m \Longrightarrow l \circ n<m \circ n .
$$

Lemma 4: Radix- F addition of the partial products of $m \circ n$ is clean.
Proof. We may observe that, for the partial product $m \circ F_{k}$, we have

$$
\overline{m \circ F_{k}}=\bar{m}+k \geq k+2
$$

Let $n=\sum_{c=0}^{r} F_{k_{c}}$ be the Zeckendorf representation. Since $k_{c+1} \geq k_{c}+2$, we see that, by lemma 3

$$
\begin{aligned}
\overline{m \circ F_{k_{r}}+m \circ F_{k_{r-1}}} & \geq \min \left(\overline{m \circ F_{k_{r}}}, \overline{m \circ F_{k_{r-1}}}\right)-2 \\
& \geq k_{r-1}+2-2 \\
& =k_{r-1} \\
\overline{\sum_{c=i}^{r} m \circ F_{k_{c}}} & \geq \min \left(\overline{\left(\sum_{c=i+1}^{r} m \circ F_{k_{c}}\right.}, \overline{m \circ F_{k_{i}}}\right)-2 \\
& \geq k_{i}+2-2 \\
& =k_{i} .
\end{aligned}
$$

Repeatedly applying this process,

$$
\overline{m \circ n}=\overline{\sum_{b=0}^{q} \sum_{c=0}^{r} F_{j_{b}+k_{c}}}=\overline{\sum_{c=0}^{r} m \circ F_{k_{c}}} \geq k_{0} .
$$

Since $k_{1} \geq 2$, we see that our addition was clean.
Theorem 4: Define the Zeckendorf representations

$$
l=\sum_{a=0}^{p} F_{i_{a}}, \quad m=\sum_{b=0}^{q} F_{j_{b}}, \quad n=\sum_{c=0}^{r} F_{k_{c}} .
$$

Then we have

$$
(l \circ m) \circ n=\sum_{a=0}^{p} \sum_{b=0}^{q} \sum_{c=0}^{r} F_{i_{a}+j_{b}+k_{c}} .
$$

Proof. We may cleanly obtain the partial products of $l \circ m$ shifted left k, summing $\left(l \circ F_{j}\right) \circ F_{k}$. This gives

$$
(l \circ m) \circ F_{k}=\sum_{a=0}^{p} \sum_{b=0}^{q} F_{i_{a}+j_{b}+k} .
$$

and we get the desired result by cleanly summing over k via lemma 4 .

This proves Theorem 2 by the symmetry of $(l \circ m) \circ n$. The proof of lemma 4 can be extended to make the resulting sum from Theorem 4 clean, allowing for arbitrary groupings of arbitrarily many Fibonacci products.

Knuth claimed that his work was inspired by [3]. In their paper, Porta and Stolarksy proved the associativity of $*: \mathbb{N}^{2} \rightarrow \mathbb{N}$, defining

$$
m * n=m n+\lfloor\phi m\rfloor\lfloor\phi n\rfloor,
$$

where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden mean. Thus, (\mathbb{N}, \circ) and $(\mathbb{N}, *)$ both form commutative semigroups.

5 Other Results

As it turns out, we can extend Zeckendorf's Theorem to all integers using the socalled "nega-Fibonacci" numbers defined on negative indices by

$$
\begin{aligned}
F_{n-2} & =F_{n}-F_{n-1} \\
F_{-n} & =(-1)^{n+1} F_{n},
\end{aligned}
$$

and all integers can be represented uniquely by a sum of nega-Fibonacci numbers, taking 0 to be the empty sum.

One question that arises fairly naturally is that of distributivity of circle multiplication over the usual addition. This is tantalizing due to the resulting semiring structure of $(\mathbb{N},+, \circ)$ this would imply. However, this would mean that

$$
m \circ n=(\underbrace{1+\cdots+1}_{m}) \circ(\underbrace{1+\cdots+1}_{n})=(1 \circ 1) m n=3 m n
$$

with concatenation representing the usual multiplication. The fact that $5 \circ 13=$ $F_{5} \circ F_{7}=F_{12}=144 \neq 3(5) 13=143$ shows it not to be the case (though distributivity can be shown to hold over clean addition). Knuth actually showed that $m \circ n \sim$ $\sqrt{5} m n$ for large m and n. He also mentioned that Porta and Stolarsky found that $m * n \sim 3.62 m n$.

References

[1] D. Knuth, Fibonacci Multiplication, App. Math. Lett. Vol. 1 pp. 57-60, 1988.
[2] G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van Fibonacci, Simon Stevin 29 pp. 190-195, 1988.
[3] H. Porta, K. Stolarksy, The edge of a golden semigroup, Col. Math. Soc. János Bolyai, 1988.
[4] E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège, 1972.

