
THE RICCI FLOW

GABRIEL J. H. KHAN

1. Introduction

Since the turn of the 21st century, the Ricci flow has emerged as one of

the most important geometric processes. It has been used to prove several

major theorems in differential geometry and topology. In this talk we will

try to provide intuition about what it is and how it behaves. One should

think of the Ricci flow as being a “heat equation for curvature”1 and we will

try to explain what that means. Instead of proving the various facts about

the flow that we assert in the talk, we have included a section at the end to

give more technical details and the citations go into more depth still.

2. History

In 1900, Henri Poincaré put for a conjecture that colloquially states that

“If it walks like a sphere and it quacks like a sphere, it is a sphere.”2 This

statement, known as the Poincaré conjecture, became one of the early ques-

tions in a field now called “low-dimensional topology” and proved itself to

be extremely subtle and intractable. It attracted the attention of many

great mathematicians and attempts to solve it lead to the development of

powerful tools. One could devote an entire seminar (or an entire career [9])

to this problem but we mention it in passing due to its relation to the Ricci

flow.

In the early 1980s, Richard Hamilton put forth an ambitious program to

attack the Poincaré conjecture. He had been studying work by Eells and

Sampson [2] that used ideas from heat theory to study harmonic maps. He

thought a similar approach might be able to finally prove the question first

posed by Poincaré. He proposed a process called the Ricci flow that would

deform the shape of a space and hopefully allow its curvature to dissipate

Date: April 13, 2016.
1This is technically not correct but is far too valuable an intuition to discard because

of technical details.
2 More formally, the conjecture is that the three-dimensional sphere is the only simply

connected compact three-dimensional manifold.
1
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throughout the space. If the space satisfied the hypotheses of the Poincaré

conjecture, he hoped the space would evolve into a round sphere and that he

could prove the conjecture with this nicer space. He was able to make this

approach work in two dimensions3 as a proof of concept, but he found that

in three dimensions the flow would sometimes violently rip apart spaces and

so was unable to finish the proof.

The rest of the story is already a part of mathematical lore. In 2000, the

Poincaré conjecture was named as one of the Clay Millenium Prize problems

and earned a $1,000,000 bounty for its solution. No one expected it to

be solved in the near future. In 2002, a terse preprint appeared on the

arxiv containing major breakthroughs in the Ricci flow. Over the next

year, two more preprints followed the first claiming to prove not only the

Poincaré conjecture, but a large generalization of it known as Thurston’s

Geometrization Conjecture. The author, Grigori Perelman was an eccentric

genius who had toiled in isolation for nearly a decade crafting his proof.

Because of the brevity of the papers and Perelman’s reclusive nature, it took

several years and an authorship scandal for the mathematical community

to accept the work as being correct and due to Perelman. Nonetheless, in

2006, Perelman was awarded a Fields medal for his efforts. He declined the

award and later turned down the Millenium Prize, as well. He has since

withdrawn from mathematics and lives with his mother in St. Petersburg,

Russia.

Nonetheless, it is hard to think of praise too high for Perelman’s work.

It is one of the greatest mathematical works of all time and a marvel of

the power of hard analysis. It is also the main reason why the Ricci flow

has been given so much attention in the past few years. Since then, it has

been used to prove other major theorems, such as the Differentiable Sphere

Theorem in 2008 [1].

3. The Heat Equation

We start our journey in more grounded territory. In order to understand

the Ricci flow in the context of heat flows, we must first understand heat

flows.

3.1. Intuition. If we have some heat distribution, such as a plate with hot

mashed potatoes on one side and ice cream on the other (a very strange

3The “2 dimensional Poincare conjecture” was already known via the classification of

Riemann surfaces
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meal), the heat from the mashed potatoes will dissipate into the plate and

the ice cream and over time the temperature distribution will converge to

a mush of constant temperature. Heat tends to dissipate from an ordered

distribution into a disordered mush4. If there is no heat source the hottest

points will cool down while the coldest ones warm up. This phenomena

has been studied using the heat equation, which was introduced by Joseph

Fourier. This equation says that a heat distribution u will evolve over time

via the equation5 ∂u
∂t = ∆u

3.2. The Laplacian. The above equation involves the Laplacian ∆u. Many

of you will remember this from vector calculus as being ∇·(∇u) (or div(grad

u)) but it is illustrative to think of it in terms of coordinates, where we have

(in R3) ∆u = ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

.

However, for the context of the Ricci flow, there is a third perspective

that is even better. We can consider the Hessian matrix
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Then from this we can see that ∆u = trH(u). This shows how we can

think of the Laplacian as the trace of some matrix of second derivatives,

which is a perspective that will help us understand Ricci curvature.

3.3. The Heat Equation. The heat equation is a partial differential equa-

tion given by the expression
∂u

∂t
= ∆u

We think of t as being a time parameter and the right hand side as

being derivatives in space. Given an initial distribution of heat (once again,

disregarding issues about the boundary), a solution to this equation will give

the temperature of points at a time t. We call such a solution a “heat flow.”

To check our intuition that the hottest points should cool down, suppose

at some time t0 the point (x0, y0, z0) was the hottest point. Then since

u(x0, y0, z0) is at a maximum, H(u) is non-positive definite so trH(u) is

non-positive so the temperature cannot be increasing. In order to show

that the temperature is actually decreasing, we need a stronger maximum

principle, but we will not derive one here.

4One can formalize this idea in terms of entropy but we will not do that here
5We are ignoring the boundary conditions here. In the context of the Ricci flow, we

will be dealing with compact manifolds without boundary so this is not an issue



4 GABRIEL J. H. KHAN

4. Riemannian Curvature

The second step in understanding a “heat flow of curvature” is to explor-

ing the study of curvature of surfaces and other spaces. Unlike the idea of

the curvature of a curve from calculus, the intrinsic curvature of a space

lacks a simple definition and is much harder to understand intuitively.

4.1. Intuitive idea. If we can all agree on one thing, it is that Euclidean

space is flat. With this idea, we can try to see how the geometry of our

space6 differs from Euclidean space locally. One thing that we can observe

is that in the plane, there are no bumps or deformations. We need some

way to mathematically measure this.

We can do this in the following way. On our space7, we will pick a point

(the north pole) and a direction from that point. Then we move along a

triangle south to the equator, then west a quarter of the way around the

ball and then back north to the pole. If we translate our vector that we

picked at the north pole along this path, we end up with a different vector.8

For those of you who have studied spherical trigonometry, this is familiar;

the larger a triangle on a sphere, the more it deviates from a flat triangle

(note that the sum of the angles in our triangle add up to 3π
4 instead of π

2 )9.

Note that if we do it this same procedure in the plane with straight lines,

we always get the same vector back. This is the key idea that allows us to

define curvature. We notice that if we translate our vector along a polygon

of whatever the equivalent of straight lines are, we might change what vector

we end up with. This is cause by the curvature of the sphere and we would

like to do this on other spaces as well.

6The spaces that we are considering are smooth manifolds, which locally smoothly

resemble Euclidean space. There are plenty of topological spaces that are not manifolds,

but differential geometry typically studies manifolds. In this talk we will use the word

”space” for ”manifold” to avoid introducing unnecessary terminology.
7I used an exercise ball in the talk, but you can use the picture of the earth instead
8Note that we are assuming the idea of parallel transport and that great circles are

geodesics on the sphere.
9This leads us to the fact that two similar triangles on a sphere are necessarily congru-

ent, which is not at all true in flat space
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Image courtesy of Andrew Steele.[10]

4.2. The Riemann Curvature Tensor. Spheres are very nice spaces in

that every point looks like every other point. However, earth is not exactly

a sphere; the geometry of Mount Everest looks very little like that of the

Marianas trench so we want some way to define curvature locally on spaces

that are not symmetric. To make sense of curvature on such a space, instead

of using a giant triangle like on our sphere, we use a small (infinitesimal)

square. To do this, we need to pick three vectors at a point P in our

space. These three directions will be the first direction that we translate

along (which we call X), the second direction we translate along (Y ), and

the vector we translate(Z). With all of these vectors, we end up getting a

vector which is the difference between the first vector and the final vector

we get. Of course, if we transport along a tiny, tiny square, the difference in

the vectors goes to zero so we need to normalize by the area of the square

(or the side length squared in the limit). This is a diagram of what the

curvature tensor R(X,Y )Z is.
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We use this idea to define the Riemann curvature tensor, which we are

going to think of as a map that eats three vectors and produces a fourth

vector10. What it does is translates a vector Z along an infinitesimal square

defined by two vectors X and Y. In order to translate a vector Z, we take

the derivative of the vector Z along X, then the derivative of that along Y.

Then, in order to translate around a square, 11 we use the formula

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z −∇[X,Y ]Z

That is a lot to process. Let’s break it down a bit.

We should think of the ∇X and the ∇Y as derivatives in the X and Y

directions. We will ignore the last term, which vanishes when X and Y

10The word ”tensor” just means that the map is linear in each of its arguments.
11 We are ignoring the question as to why these translations form a closed square,

which has to do with the precise definition of how we take derivatives of vectors. The

precise reason is that the Levi-Civita connection is torsion-free.
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are orthonormal vector fields12. In flat Euclidean space, the fact that the

curvature tensor is zero is exactly the same as a fact that we are much more

familiar with: the equality of mixed partials!

The Riemann curvature tensor completely determines how the shape of a

manifold differs from flat space although it is a painful calculation to prove

this [6]. The key point is that if the curvature tensor is identically zero then

the space is locally isometric to flat space and if the tensor is non-zero than

it is not. Note that on our cylinder, we also always get the same vector

back so cylinders are flat (this shows that intrinsic curvature is a little more

subtle than it might seem) However, paper is flat and we can roll it into a

cylinder so perhaps the fact that a cylinder is flat is not entirely surprising.

Also, note that the final product is a vector and that in some sense the

Riemann curvature tensor as a geometric second derivative13. We can think

of it as an analog to the Hessian except that it has 3 vectors as inputs and

a vector as an output. In the same way that if the Hessian of a function

is identically zero then it is linear, if the Riemann tensor is identically zero

than the space is flat.

5. Ricci Curvature

So if we think of the curvature R(·, ·)· as being a map that eats three

vectors and produces a fourth vector, we can ask how much the vector that

we produce agrees with the second vector. Due to various symmetries, this is

the same as asking how much it agrees with the first vector and the question

of how much it agrees with the third vector is trivial (it will always be zero).

One way of expressing this is that if we decompose our vector space into

the orthonormal basis ei, then given vectors X and Z we can construct the

quantity Ric(X,Z). This is known as the Ricci tensor14

Ric(X,Z) =
n∑
i=1

R(X, ei)Z · ei

where the · is the usual dot product. Keep in mind, this takes the vector

Z and translates it along a bunch of squares whose first side is always X.

12This terms forces the map to be linear and hence to be well defined regardless of how

we extend X and Y in a neighborhood
13This analogy is precise in the sense that if we expand out the metric in geodesic

normal coordinates around a point, we have gij = δij − 1
3
Rikjlx

kxl +O(|x|3). We have to

flat the last term of the curvature tensor to obtain this result.
14Once again, ignoring why it is called a tensor.
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Then it determines how much the final answer agrees with the second side

of the square15.

If we write the Laplacian as the trace of the Hessian, we get ∆ =
∑n

i=1
∂
∂ei

∂
∂ei

and this looks very similar to Ric(X,Z) =
∑n

i=1R(X, ei)Z · ei if we think of

the Riemann curvature tensor as being a geometric Hessian. In this sense,

the Ricci curvature is a geometric Laplacian16. In the same way that the

Laplacian determines how much the gradient flow of a function stretches

and compresses, the Ricci flow has the nice property that it fully determines

how volumes on our space differ from volumes in flat space.

6. The Ricci Flow

The Ricci flow is a flow that changes the shape of our space proportional

to the Ricci curvature. We have not defined how we determine what the

“shape” of a space is, but it turns out that it is completely determined by

the behavior of the dot product. Therefore, the formula of the Ricci flow

is the following. Given two stationary vector fields on our space, X and Y

(that do not evolve in time), at every point, we define the Ricci flow as

∂

∂t
X · Y = −2Ric(X,Y )

Notice that this is a system of equations because we get a different equa-

tion for each X and Y . The vector fields are staying the same but their dot

product is changing, which we think of as a change of the metric and so a

change of the underlying shape of the space. This seems to be massively

overdetermined but a key point is that everything is nice and linear so we

can write this in terms of the basis vectors ei and ej where we get the finite

system of equations

∂

∂t
ei · ej = −2Ric(ei, ej)

Now there are exactly as many equations as there are unknowns.

Of course, we cannot insist that ei forms an orthonormal basis after time

zero if the space is not flat.17. The factor of −2 appears because analysts

15It is worthwhile to note that the Ricci tensor is symmetric (i.e that Ric(X,Z) =

Ric(Z,X)). This is important because in order for the Ricci flow to be defined, the

deformation must be symmetric in order for the metric tensor to remain so.
16This is precise since, in harmonic coordinates, Ricij = − 1

2
∆gij +lower order terms...

17We are avoiding the need to define coordinate charts but normally the equation is

written as ∂
∂t
gij = −2Ricij
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and geometers cannot decide on the definition of the Laplacian and differ

by a sign. However, the actual vector fields ei are not evolving, just the dot

product of ei and ej .

However, the key observation is that we should notice a parallel between

this formula and the heat equation ∂u
∂t = ∆u. We have tried to justify that

we can think of the Ricci curvature tensor as being analogous of ∆ (well,

−2∆ but close enough) and so the Ricci flow is a heat flow of shape. As

a demonstration of this fact, here is a demonstration of the Ricci flow

acting on a deformed two sphere. Notice how the shape becomes more and

more spherical as time goes on. [5] In the same way that the heat equation

spreads the heat evenly throughout the space, the Ricci flow spreads the

curvature evenly throughout the space.

6.1. Some caveats. Relying back to our intuition about how heat behaves,

we expect that the Ricci flow should smooth out our space and make it more

uniform. In reality, the Ricci flow is more complicated than a heat flow. First

off, it is nonlinear (the linear combination of two solutions is no longer a

solution) because how we take derivatives on the space is determined by

the shape of the space in the first place and there is a dot product in the

definition of the Ricci tensor. Secondly, it behaves more like the reaction-

diffusion equation ∂
∂tu = ∆u + u2. The first term on the right hand side

behaves as a diffusion term that disperses heat throughout the space whereas

the second acts a reaction term that concentrates heat at a point. Reaction-

diffusion equations can be thought as a tug-of-war between the diffusion

process and the reaction process. If diffusion wins, the solution will smooth

itself out much like the normal heat equation. If the reaction term wins

out, the heat will become more and more intense and can sometimes even

become become infinite in a finite amount of time!18 With the Ricci flow, the

first key estimate is that the curvature grows similarly to ∂
∂tu = ∆u + Cu2

and that sometimes the reaction term wins out. In this case, the curvature

becomes larger and larger until the shape tears itself apart (or shrinks to a

point). This is part of what made analysis of the flow so difficult. It is not

obvious when singularities occur or what they look like19. In any case, the

18Like the equation ∂
∂t
u = u2.

19In three dimensions, one of Perelman’s key contributions on his way to Poincaré was

to classify all the possible structures of singularities and to show that a singularity known

as the “cigar soliton” would not develop.

https://www.youtube.com/watch?v=siAbBsj9XPk
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Ricci flow is a powerful tool that can be used to prove classification theorems

that were unable to be solved using more conventional techniques.

7. Technical Notes

This section is written for those who are more familiar with geometric

analysis. It addresses some of the points that we are skimming or ignoring.

Some of the details have already been discussed in the footnotes.

7.1. Introduction and History. The Ricci flow equation is not parabolic

so it is not a heat flow20 . As such, establishing the existence was a major

accomplishment. Hamilton was able to establish existence via a technical

argument [3] but a few years later Dennis DeTurck discovered the DeTurck

trick, which is a much more accessible argument. This trick found a related

flow that is parabolic and then used the diffeomorphism-invariance to estab-

lish existence for the standard Ricci flow [12]. Uniqueness then follows from

a maximum principle argument.

Once existence and uniqueness were established, Hamilton studied the

behavior of the flow. He found that the Ricci flow does not simply be-

have like a diffusion equation. Instead, it is more like a reaction-diffusion

equation which can form singularities. In order to have any hope of get-

ting the topological results that he proposed, one would have to understand

the formation of singularities and their relationship to solitons of the flow.

Although Hamilton was not able to gain a full understanding of this phe-

nomena, he was able to use the flow to show that under positive curvature

assumptions, the Poincaré conjecture holds. He did so by showing that in

this case the flow would take a simply connected space to a round singularity,

and hence the space is diffeomorphic to a sphere.

Over the next 20 years, various mathematicians contributed to the under-

standing of the Ricci flow. Versions of existence and uniqueness theorems

were established for non-compact manifolds as well as theorems exploring

the geometry of possible singularities. Perelman’s first breakthrough is the

discovery of relevant functionals which allow us to consider the Ricci flow as

a gradient flow. He produced several entropy inspired functionals that are

monotonic under the flow. These were used to establish and slowly improve

20The diffeomorphism invariance of the flow introduces negative terms into its sym-

bol [12].
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the estimates on the Ricci flow21. These were ultimately used to control the

formation of singularities well enough to perform surgery on any developing

singularity. He also proved that one only needed to perform surgery finitely

many times to create pieces that approach a model geometry under a flow.

The technical details are far outside the scope of this talk. This proof uses

seemingly every known technique in nonlinear analysis and proves not only

the Poincaré conjecture [4], but also Thurston’s Geometrization Conjecture.

This is geometric analysis’ most important success and arguably the most

important theorem in geometry from the past century.22

Note that we are using the word “space” to mean “compact smooth man-

ifold.” We are doing this in order to introduce unnecessary terminology but

for the sake of precision it should be noted.

7.2. The Heat Equation. The heat equation is parabolic, meaning that its

symbol is positive definite aside from a degenerate direction (the t direction).

In general, such equations have real analytic solutions for all positive time,

even for relatively irregular boundary data23. The domain of the solution to

the heat equation for a space M is generally M× [0,∞) and the boundary is

M×0∪∂M× [0,∞). For this, we are really interested in compact manifolds

without boundary, so to get a solution we must only specify the initial

distribution on M ×0. Such solutions will have a strong maximum principle

and are very well behaved. In fact, one can show that this is a gradient flow

of Dirichlet energy. For nice initial distributions (bounded energy) solutions

will converge smoothly in time towards a constant solution. This is true on

a compact Riemannian manifolds as well, although it is somewhat harder to

define the Laplacian. This idea gets a lot of use in heat theoretic approaches

to many theorems. [6]

7.3. Riemannian Curvature. The definition of the Riemannian curvature

is R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z −∇[X,Y ]Z. We are using ∇X to denote

21 He used groundbreaking work from an astonishing number of fields, including

Alexandrov geometry, surgery theory, functional analysis and several other fields to obtain

these estimates.
22 In his partial exposition of the proof, Terence Tao writes that even if the result were

solely in the domain of partial differential equations and had no applications to geometry

and topology, it would still be ”the most technically impressive and significant result in

the field of nonlinear PDE in recent years.” [11]
23If the equation is highly non-linear more conditions may have to be imposed but this

is a good heuristic
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a covariant derivative in the X direction with respect to the Levi-Civita

connection.

We are completely overlooking the fact that in general there is not a

unique way of taking derivatives of a vector on a manifold. Once must

introduce the idea of a connection and use one in order to define parallel

transport. In this talk we are using the Levi-Civita connection, which is the

unique torsion-free metric compatible connection on a Riemannian mani-

fold. In the talk I did not define the metric tensor, and used the phrase

”dot product” instead. I thought that this would convey the essential idea

without being too technical.

7.4. Ricci Curvature. The formal definition of the Ricci curvature in coor-

dinates is that given two vector fields X and Z, Ric(X,Z) =
∑n

i=1〈R(X, ei)Z, ei〉.
It is the contraction of the Riemann curvature tensor along second and

last indices. In three dimensions, the Ricci curvature has the nice prop-

erty that it completely determines the entire curvature tensor, but that

fails in higher dimensions. In harmonic coordinates, one can write that

Ricij = −1
2∆gij + lower order terms..., which shows the precise sense in

which it is a Laplacian up to lower order terms.

The Ricci curvature determines how the volume of small cones around a

geodesic differs from flat space. The tensoriality and symmetry of the Ricci

curvature follows from the tensoriality and various symmetries of the full

curvature tensor.

7.5. Ricci Flow. We are not introducing coordinate charts which is why

we have given such an awkward definition of the Ricci flow. However, the

definition of the Ricci flow is ∂tgij = −2Ricij . From the previous section,

we can write

Ricij = −1

2
∆gij + lower order terms...

and so we find that the Ricci flow can be written (point-wise) as

∂tgij = ∆gij + lower order terms...

In this sense, the Ricci flow can be viewed as a non-linear reaction diffusion

equation.

The reaction term in the Ricci flow can be bounded quadratically [12].

The Ricci flow often does blow up much like the associated reaction diffusion

equation. It is not hard to prove that once you have short term existence, you

have existence until the Riemannian curvature blows up [8] so a singularity

is generally defined to be a blow up of the Riemannian curvature tensor.
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However, it has been shown that at any singularity the Ricci curvature

blows up as well [7]. It is unknown whether the scalar curvature necessarily

blows up at a singularity.
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(2006) preprint http://arxiv.org/pdf/math/0610903v1.pdf

[12] P. Topping, Lectures on the Ricci Flow, (Mar. 2006), preprint

E-mail address: khan.375@osu.edu

https://www.youtube.com/watch?v=siAbBsj9XPk
https://andrewsteele.co.uk/blog/2009/02/pi-geometry-sphere-balls/

	1. Introduction
	2. History
	3. The Heat Equation
	3.1. Intuition
	3.2. The Laplacian
	3.3. The Heat Equation

	4. Riemannian Curvature
	4.1. Intuitive idea
	4.2. The Riemann Curvature Tensor

	5. Ricci Curvature
	6. The Ricci Flow
	6.1. Some caveats

	7. Technical Notes
	7.1. Introduction and History
	7.2. The Heat Equation
	7.3. Riemannian Curvature
	7.4. Ricci Curvature
	7.5. Ricci Flow

	References

