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ABSTRACT. Questions raised during Boming Jia’s talk on June 26th concerned plan-
etary orbits that are hyperbolas or parabolas and the precise meaning of the state-
ment that the inverse-square law is equivalent to Kepler’s laws. The goal of today’s
talk is to clarify those issues. No knowledge of differential equations is required.

1. NOTATION

All vector and affine spaces are assumed finite-dimensional. We denote by 〈 , 〉
the inner product of a given Euclidean vector space Σ, by | | the associated norm,
and by ( )˙ = d/dt the differentiation with respect to the time t.

Given C1 functions v, w of the variable t, valued in vector spaces Σ, Σ′, and a
vector-valued bilinear function B on Σ× Σ′, the Leibniz rule reads

(1.1) [B(v, w)]̇ = B(v̇, w) + B(v, ẇ).

By a trajectory in an affine space A we mean any C3 function t 7→ x = x(t) ∈ A
defined on an open interval in IR. If a trajectory t 7→ x(t) in a Euclidean vector
space does not pass through 0, (1.1) yields 〈x, x〉˙ = 2〈x, ẋ〉, and so

(1.2) ṙ = 〈x, ẋ〉/r, where r = |x|,

as r = 〈x, x〉1/2. We say that a trajectory t 7→ x(t) in a vector space is radially
accelerated if x(t) and ẍ(t) are linearly dependent for every t. In view of Newton’s
second law of dynamics,

(1.3) mẍ(t) is the total force acting on the object at time t,

for an object of mass m moving along the trajectory t 7→ x(t). Thus, radially-
accelerated trajectories correspond to central forces, pushing the object in question
towards or away from the fixed location 0.

For a radially-accelerated trajectory t 7→ x in a Euclidean vector space, let us set

(1.4) E = T + U, with T = 〈ẋ, ẋ〉/2 and U = 〈x, ẍ〉.

Assuming that the object moving along the trajectory has unit mass, we call T, U
and E its kinetic, potential and total energies. Since the trajectory is radially acceler-
ated, 〈ẋ, ẍ〉x = 〈x, ẋ〉ẍ. With r = |x|, this gives, as a trivial consequence of (1.1),

(1.5) ż = −Eẋ, where z = 〈x, ẋ〉ẋ− 〈ẋ, ẋ〉x/2, so that |z| = r〈ẋ, ẋ〉/2.
1
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Let ±E < 0, with some sign ±, for the total energy E of a radially-accelerated
trajectory t 7→ x(t) in a Euclidean vector space. Then

(1.6) setting y = z/E, we have s ± r = ±Ur/E, where r = |x| and s = |y|.

In fact, by (1.4) and (1.5), Ur = (E − T)r = Er − r〈ẋ, ẋ〉/2 = Er − |z|, and so
|z| − Er = −Ur. Therefore, s± r = |y| ± |x| = ∓(|z| − Er)/E = ±Ur/E.

The time-dependent vector z plays a crucial role in our discussion. For trajecto-
ries representing (non-radial) Newtonian planetary orbits, with 0 serving as both a
focus and the location the sun, z 6= 0 at all times t, and z represents the direction
which is either parallel to the line segment joining the planet’s position x to the
other focus (of an ellipse or hyperbola), or normal to the directrix (of a parabola).
Geometrically, 2z arises, at times at which ẋ 6= 0, as the image of 〈ẋ, ẋ〉x under the
reflecion in the line IRẋ. In fact, the square-brackets summand in the decomposition
〈ẋ, ẋ〉x = [〈ẋ, ẋ〉x− 〈x, ẋ〉ẋ] + 〈x, ẋ〉ẋ is orthogonal to ẋ, and so the reflection is the
result of replacing that summand with its opposite.

Applied to v = x and w = ẋ in Σ′ = Σ, (1.1) gives

(1.7) B(x, ẋ) is constant for skew symmetric B and radially accelerated t 7→ x,

which amounts to conservation of angular momentum in the case of central forces.
We refer to a trajectory in a vector space as radial if it lies entirely in line containing

0, but does not pass through 0. Every radial trajectory is radially accelerated.

Remark 1.1. For a non-radial, radially-accelerated trajectory t 7→ x in a vector
space Σ, not passing through zero, x and ẋ are linearly independent at any t.

In fact, their linear independence for some fixed t implies the same for every t.
(To see this, identify Σ with the space IRn of column vectors, complete x(t), ẋ(t) to
a basis x(t), ẋ(t), e3, . . . , en, and use (1.7) with B = det[ · , · , e3, . . . , en].) If x(t) and
ẋ(t) were now linearly dependent for some (hence every) t, writing ẋ = ϕ̇x for a
suitable C1 function t 7→ ϕ(t), we would get ẇ = 0, where w(t) = e−ϕ(t)x(t), and
all x(t) would lie in the line through 0 spanned by the constant vector w.

Remark 1.2. By Remark 1.1, a non-radial, radially-accelerated trajectory t 7→ x(t)
in a vector space, not passing through zero, has ẋ 6= 0 6= z at all times t, cf. (1.5).

Although the following lemma, as stated, deals with trajectories, it obviously re-
mains true for (time-independent) vectors x, ẋ, u, its geometric content being: if the
difference of two unit vectors is nonzero and orthogonal to a vector ẋ 6= 0, then the
unit vectors are each other’s images under the reflecion in the line IRẋ. See also the
discussion of z in the lines preceding (1.7).

Lemma 1.3. If a non-radial, radially-accelerated trajectory t 7→ x(t)r{0} in a Eu-
clidean vector plane Π has 〈ẋ, u + x/r〉 = 0 and u 6= −x/r at all times t for some
time-dependent unit vector u ∈ Π, where r = |x|, then u = −z/|z|, with z as in (1.5).

Proof. As 〈u + w, u− w〉 = 〈u, u〉 − 〈w, w〉, the difference of the unit vectors u and
w = x/r is orthogonal to their sum, and so ẋ = G(r−1x− u) for some function G.
Taking the norms-squared of both sides of the equivalent relation Gu = Gr−1x− ẋ,
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we get, from Remark 1.2, 2G〈x, ẋ〉/r = 〈ẋ, ẋ〉 6= 0 and 2G = r〈ẋ, ẋ〉/〈x, ẋ〉. By (1.5),
the equality Gu = Gr−1x− ẋ divided by G yields u = −z/|z|. �

Remark 1.4. A real-valued C1 function γ on an interval I such that |γ̇| ≤ |ϕγ|
for some continuous function ϕ is either identically 0, or nonzero everywhere in
I. In fact, we may assume that I is a closed interval in which γ 6= 0 somewhere
(since a counterexample to our claim—if it existed—would be realized in one). For
any fixed a and variable t, both from a maximal open subinterval I ′ of I on which
|γ| > 0, setting λ(t) = log |γ(t)| and denoting by J[...] the integral of ... from a
to t, we have |λ(t)| ≤ |λ(a)| + |λ(t) − λ(a)|, while |λ(t) − λ(a)| = |J[γ̇/γ]| ≤
|J[|γ̇/γ|]| ≤ max|ϕ|, so that log |γ| is bounded on I ′ and γ 6= 0 at both endpoints
of I ′. Due to its maximality, I ′ must equal the interior of I.

2. THE TRADITIONAL THREE TYPES OF CONIC SECTIONS

In a Euclidean affine plane Π, the ellipse/hyperbola associated with two distinct
points p, q ∈ Π (the foci) and a real number d > 0 such that ±(d− |p− q|) > 0 is

(2.1) {x ∈ Π : ||x− p| ± |x− q|| = d},
the sign ± being + for an ellipse and − for a hyperbola. By the p-branch of the
hyperbola (2.1), with ± = −, we mean the set

(2.2) {x ∈ Π : |x− p|+ d = |x− q|}.
The parabola with the focus p ∈ Π and the directrix Λ is defined to be

(2.3) {x ∈ Π : dist(x, Λ) = |x− p|},
where Λ is a line in Π such that p /∈ Λ.

In any Euclidean vector space we have the strict triangle inequality

(2.4) |v + w| < |v| + |w| unless v = λw or w = λv for some λ ≥ 0.

Lemma 2.1. A non-radial, radially-accelerated trajectory t 7→ x(t) ∈ Π r{0} in a
Euclidean vector plane Π lies in an ellipse (2.1) or the 0-branch (2.2) of a hyperbola (2.1),
with p = 0 and some q, d,±, if and only if there exists a C3 function t 7→ y(t) ∈ Πr{0}
such that, for r = |x| and s = |y|,
(2.5) x + y is constant, while s± r is constant and positive.

Proof. To establish sufficiency of (2.5), we define the constants q and d by q = x + y
and d = s± r. The required condition ±(d− |p− q|) > 0 now holds with p = 0:

(2.6) a) |q| > d if ± is the minus sign, b) |q| < d when ± stands for + .

In fact, with ± chosen to be −, (2.5) gives s− r > 0, and so, obviously,

(2.7) s = |y| = |q− x| ≤ |q|+ |x| = |q|+ r, that is, |q| ≥ d = s− r > 0.

All inequalities in (2.7), for any time t, are actually strict: if ≤ and ≥ were =
at some t, the same would be the case for all t, since q and d are constant. As
q 6= 0 by (2.7), applying (2.4) to (v, w) = (q,−x) we would get x = ϕq with some
function ϕ ≥ 0, and the trajectory would be radial, contrary to our hypothesis.
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Now let ± be +. The triangle inequality |q| = |x + y| ≤ r + s = d is strict by
(2.4): if we had y = ϕx with some function ϕ ≥ 0, then q = x + y = (ϕ + 1)x
would be nonzero, and so x = (ϕ + 1)−1q, again making the trajectory radial.

On the other hand, (2.5) is obviously necessary, as we may set y(t) = q− x(t). �

Lemma 2.2. A non-radial, radially-accelerated trajectory t 7→ x = x(t) ∈ Π r{0} in
a Euclidean vector plane Π lies in a parabola (2.3) with p = 0 and some Λ if and only if

(2.8) 〈u, x〉+ r is constant for some constant unit vector u and r = |x|.
One then has Λ = {w ∈ Π : 〈u, w〉 = c}, where c is the constant value of 〈u, x〉+ r.

Proof. First, (2.8) is sufficient: c = 〈u, y〉 is constant for y = x + ru. The trajectory
now lies in (2.3) with Λ = {w ∈ Π : 〈u, w〉 = c}. In fact, x(t) = y(t)− r(t)u for all
t, with y(t) ∈ Λ and r(t)u orthogonal to Λ, proving that dist(x(t), Λ) = |r(t)u| =
r(t) = |x(t)− p|, where p = 0. At the same time p = 0 /∈ Λ, or else c would equal
0, that is, 0 = 〈u, y〉 = 〈u, x〉+ r. The resulting equality case 〈u, x〉 = −r = −|x||u|
in the Schwarz inequality would imply that x(t) is, for every t, a negative multiple
of u, even though the trajectory was assumed to be non-radial.

Necessity of (2.8): as dist(x(t), Λ) = r(t) for all t, writing x(t) = y(t)− q(t) with
y(t) ∈ Λ and q(t) orthogonal to Λ we have |q(t)| = r(t) > 0, so that the unit
vector u = q(t)/r(t) does not depend on t, and applying 〈 · , u〉 to the equality
ẋ = ẏ− q̇ = ẏ− ṙu we obtain (2.8), since ṙ = 〈x, ẋ〉/r by (1.2). �

3. KEPLER’S FIRST LAW

A radially-accelerated trajectory t 7→ x in a vector space Σ, not passing through
zero, must lie in a plane containing 0. To see this, write ẍ = (ϕ− 1)x for some C1

function t 7→ ϕ(t). Hence, for α = 〈w, x〉 and β = 〈w, ẋ〉 with any fixed vector w,
(1.1) implies that α̇ = β and β̇ = ϕα. Setting γ = α2+ β2 we now obtain γ̇ = 2ϕαβ,
and so |γ̇| = 2|ϕαβ| ≤ |ϕγ|. If 〈w, x〉 = 〈w, ẋ〉 = 0 at some t, Remark 1.4 thus gives
〈w, x〉 = 〈w, ẋ〉 = 0 for all t. Applied to linearly independent vectors w3, . . . , wn
orthogonal to x(t) and ẋ(t) for some t, where n = dim Σ, this shows that the
trajectory lies in the plane through 0 orthogonal to w3, . . . , wn.

We say that a radially-accelerated trajectory t 7→ x = x(t) in a Euclidean vec-
tor space, not passing through 0, has the inverse-square property if ẍ is a negative
constant multiple of |x|−3x. With the potential energy U as in (1.4), this amounts to

(3.1) ẍ = Ux/r2, where U = −k/r for some k ∈ IR, and r = |x|.

Lemma 3.1. For a radially-accelerated trajectory t 7→ x = x(t) ∈ Σ r{0} in a Eu-
clidean vector space Σ, the inverse-square property is equivalent to conservation of total
energy, that is, to constancy of the function E in (1.4).

Proof. With ẍ = Ux/r2, (1.4), (1.1) and (1.2) give Ṫ = Uṙ/r. Hence Ė = Ṫ + U̇ =
(Ur)˙/r. Consequently, Ur is constant if and only if so is E. �

Theorem 3.2. For a non-radial, radially-accelerated trajectory t 7→ x = x(t) ∈ Πr{0}
in a Euclidean vector plane Π, the following two conditions are equivalent:

(a) it lies in an ellipse, the 0-branch of a hyperbola, or a parabola, with a focus at 0,
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(b) it has the inverse-square property and the constant k in (3.1) is positive.
The total energy E in (1.4) is then constant. For an ellipse/hyperbola, E is negative/positive
and, with z as in (1.5), the Π-valued function x + z/E is also constant, its value being
the other focus. For a parabola, z is constant, nonzero, and normal to the directrix.

Proof. Assume (b), that is, (3.1) with k > 0. In view of Lemma 3.1, E is constant.
If ±E < 0 with some sign ±, (1.5) gives ẋ + ẏ = 0 for y = z/E. By (1.6) and

(3.1), s± r = ∓k/E, and (a) follows from Lemma 2.1.
If E = 0, (1.5) and Remark 1.1 imply that z is constant and nonzero. As (2.8)

holds for the unit vector u = −2z/[r〈ẋ, ẋ〉] (cf. (1.5)), Lemma 2.2 implies (a).
In both cases, our discussion also proves the final clause of the theorem.
Conversely, if the trajectory lies in an ellipse or the 0-branch of a hyperbola with

a focus at 0, Lemma 2.1 yields (2.5) for some y, where r = |x| and s = |y|. Also,

(3.2) r−1x ∓ s−1y 6= 0 at all times t.

(Otherwise, y would, at some t, be a positive/negative multiple of x, so that a
point of an ellipse would lie between the foci or, respectively, one focus would lie
in the segment joing the other to a point of a hyperbola.) From (1.2) with ẏ =
−ẋ we now obtain 0 = ṙ ± ṡ = 〈ẋ, x/r〉 ± 〈ẏ, y/s〉 = 〈ẋ, r−1x ∓ s−1y〉. Applying
Lemma 1.3 to u = ∓s−1y, which is allowed in view of (3.2), we get u = −z/|z|,
that is, by (1.5), y = z/F, where 2F = ∓r〈ẋ, ẋ〉/s, and so ±F < 0. Differentiating
y = z/F, we conclude from (1.5) that −Fẋ = Fẏ = ż− zḞ/F = −Eẋ− Ḟ〈x, ẋ/F〉ẋ +
Ḟ〈ẋ, ẋ/F〉x/2. Thus, F is constant (or else, at a time t at which Ḟ is nonzero, x and
ẋ would be linearly dependent, making the trajectory radial in view of Remark 1.1).
With Ḟ = 0, the last equality reads F = E, cf. Remark 1.2. Therefore, E is constant,
and Lemma 3.1 implies (b); positivity of k is immediate since, as we just saw, y =
z/F = z/E and ±E = ±F < 0, while, from (2.5) and (3.1), 0 < s± r = ∓k/E.

Finally, let the trajectory lie in a parabola having the focus at 0. Using Lemma 2.2
we choose u with (2.8), and then (1.2) gives 〈ẋ, u + x/r〉 = 0. Lemma 1.3 now yields
u = −z/|z|, that is, z = −ϕu with ϕ = |z|. (Note that u + x/r is nonzero at all
times: otherwise we would have c = 〈u, x〉+ r = 〈ru, u + x/r〉 = 0 in Lemma 2.2,
and the focus 0 would lie on the directrix Λ.) Differentiating −z = ϕu we see that,
by (1.5), ϕ̇u = Eẋ. Thus, E must be identically zero, or else, on a subinterval of the
time interval on which E 6= 0, the nonzero vectors ẋ(t) tangent to the parabola at
the mutually distinct points x(t) would all be parallel to the same vector u. In view
of Lemma 3.1, this proves (b), positivity of k (that is, negativity of U) now being
obvious from (1.4) with E = 0, where T > 0 according to Remark 1.2. �

Remark 3.3. Positivity of k in (3.1) means that gravity is a force of attraction. To
discuss the case k < 0, one only needs to replace d with −d in (2.2), and ‘posi-
tive’ with ‘negative’ in (2.5) (for the hyperbola case only). It is now clear that the
trajectory then has to lie on the “other” branch of the hyperbola, the ellipse and
parabola being excluded in view the line preceding the last paragraph in the proof
of Theorem 3.2, along with the last line of that paragraph.


