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Abstract

In 1770 Lagrange proved his famous theorem that every natural number can be
written as the sum of 4 squares. In the same year, Edward Waring in his Meditationes
Algebraicae cojectured a generalization that every natural number can be written as
the sum of at most s kth powers. This came to be known as Waring’s Problem. In this
talk, we overview the early solutions given by Hilbert and then Hardy and Littlewood
as well as present an elementary solution given by Y. V. Linnik. We also explore some
interesting generalizations such as the “Waring-Goldbach problem”.
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1 History

In 1640, Fermat conjectured that every positive integer can be written as the sum of
four squares. Euler attempted to to solve this problem but was unsucessful. However,
he was was able to reduce this problem to primes by using his four square identity that
he discovered in 1748. Finally in 1770, Lagrange showed that every positive integer
can be expressed as the sum of 4 squares, and in the same year, Edward Waring in his
book Meditationes Algebraicae made the remarkable conjecture that “Every number is
the sum of 4 squares; every number is the sum of 9 cubes; every number is the sum
of 19 fourth powers; and so on[3].” Furthermore, in his 1782 edition, Waring somewhat
mysteriously added that “similar laws may be affirmed for the correspondingly defined
numbers of quantities of any like degree[3].” This conjecture came to be known as
Waring’s problem.

Waring’s Problem. For all k ∈ N, there exists a g(k) such that every a ∈ N can be
expresseed as the sum of at most g(k) kth powers of positive integers.

2 Early Works and Hilbert’s Proof

Due to Waring’s mysterious quote, there is speculation that Waring was referring to
polynomial expressions and was not limiting his conjectures to only nth powers.. A
result of this nature was proven by Erich Kamke in 1921.[5]

Theorem (Kamke, 1921). Let f(x) be an integer valued polynomial with no fixed
divisor d > 1 (i.e., there is no such d such that d|f(n) ∀n ∈ N). Then for large enough
s,

f(x1) + f(x2) + · · ·+ f(xs) = n

is solvable for large enough n.

We now return our focus back to Waring’s problem. During the next 139 years after
Waring’s claim, only special cases of his conjecture were proved for k = 3, 4, 5, 6, 7, 8, 10
and using Lagrange’s work, Joseph Liouville in 1859 was able to show that g(4) ≤ 53.
It was only in 1909 that Hilbert was able to show that g(k) exists for all k. Hilbert’s
proof used geometrical results about convex bodies to show that every sufficiently
large positive integer can be written as a rational combination of a fixed number of kth
powers. Hilbert then showed that this was equivalent to Waring’s problem. However,
Hilbert’s proof provided no insights on the bounds for g(k) and only in 1953 did G.
Rieger prove the unwieldy bound (given in [3])

g(k) ≤ (2k + 1)260(k+3)3k+8
.

3 Hardy and Littlewood

A decade after Hilbert’s proof, Hardy and Littlewood used a very different technique
called the circle method to solve Waring’s problem. This method arose from Hardy
and Ramanujan and their study of the partition function in 1918 which appeared the
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paper Asymptotic Formulae in Combinatory Analysis. This method was utilized by
Hardy and Littlewood in their solution of Waring’s problem in 1920. We will present
a quick sketch of their proof.
Let

F (z) =
∞∑
a=0

za
k

where |z| < 1. Then

F (z)n =

∞∑
a1=0

· · ·
∞∑

an=0

za
k
1+···akn =

∞∑
m=0

rn(m)zm

where rn(m) is the number of nonnegative solutions to

m = ak1 + ak2 + . . .+ akn. (1)

Then using Cauchy’s integral formula, we have

rn(m) =
1

2πi

∫
C
F (z)nz−m−1dz

where C is a circle centered at the origin with radius 0 < ρ < 1. The problem in evalu-

ating this integral arises from the singularities e
2πip
q for all rationals p

q . The “heaviest”
singularities are at the points where q has a small denominator. To get around this
problem, Hardy and Littlewood divided the circle into major and minor arcs which
allowed them to estimate this integral. They were able to show that rn(m) has order
of magnitute m

n
k
−1 so for all m, rn(m) > 0 for sufficiently large n = g(k). In an essay,

Hardy himself described the circle method as

Figure 1: Singularities in the Unit Circle
(Courtesy of Wikimedia)

“Imagine the unit circle as a thin circular rail,
to which are attached an infinite number of small
lights of varying intensity, each illuminating a cer-
tain angle immediately in front of it. The bright-
est light is at x = 1, corresponding to p = 0, q = 1;
the next brightest at x = −1, corresponding to

p = 1, q = 2; the next at x = e
2πi
3 and e

4πi
3 , and

so on. We have to arrange the inner circle, the
circle of integration, in the position of maximum
illumination. If it is too far away the light will not
reach it; if too near, the arcs which fall within the
angles of illumination will be too narrow, and the
light will not cover it completely. Is it possible to
place it where it will receive a satisfactorily uni-
form illumination?[1]”

4 Approximations and Variations

Hardy and Littlewood’s method of approximating rn(k) allowed others to establish
bounds for g(k). For example, Balasubramanian proved that g(4) = 19 (1986) and
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Chen proved that g(5) = 37 (1964)[9]. Dickson, Pillai, and Niven also conjectured that
for k > 6,

g(k) = 2k
⌊
(3/2)k

⌋
− 2

when
2k{(3/2)k}+

⌊
(3/2)k

⌋
≤ 2k.

Interestingly, this value for g(k) was proposed as a lower bound by J.A. Euler, son of
Leonhard Euler. Mahler in 1957 showed that the above conjecture holds for all n except
a finitely many exception and as of 1989, this has been verified for k ≤ 471, 600, 000[9]!

Now instead of asking for the value of g(k), we can ask a slightly modified question:
How many kth powers does it take to write every sufficiently large integer as the sum
of kth powers? Denote this value as G(k). It is known that G(2) = 4, G(4) = 16 and
G(3) ≤ 7[1]. Hardy and Littlewood were able to prove that

G(k) ≤ (k − 2)2k−1 + 5.

The most recent upper bound for G(k) was given by Trevor Wooley in 1992 and he
was able to show[8]

G(k) ≤ k log k + k log log k + Ck

for some constant C. We can extend our question to ask for the value of G1(k) which
is the number of kth powers such that almost all numbers can be expressed as a sum
of G1(k) kth powers. (Here almost all means an asymptotic density of 1). It is known
that G1(2) = 4, G1(3) = 4, G1(4) = 15 but further research is needed.
Even though Hardy and Littlewood’s methods gave reasonable bounds for g(k), we
would still like an elementary solution since the statement of Waring’s problem is so
simple. Such an elementary proof was given by the Soviet scholar Y. V. Linnik in 1940
using the ideas of Lev Schnirelmann developed in 1936.

5 Schnirelmann’s Inequality

Before presenting Linnik’s elementary proof, we must first discuss the idea of a basis
and the density of a set. Recall that Lagrange’s Four Square theorem states that
every positive integer can be written as the sum of at most four squares. Another
interpretation of this statement is that N = A + A + A + A where A is the set of all
nonegative squares. In general, we will say that a set S is a basis of N if

N = S + . . .+ S︸ ︷︷ ︸
j

for some natural number j. Waring’s problem then can be reformulated as the kth
powers form a basis in the natural numbers. Now for a set S, define

S(n) = #{si ∈ S : 1 ≤ si ≤ n}.

Schnirelmann then defined the density of S as

d(S) = inf
n

S(n)

n
.

He then proved the following inequality.
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Theorem (Schnirelmann, 1936). Let A,B ⊆ N. Then

d(A+B) ≥ d(A) + d(B)− d(A)d(B).

Using the pigeonhole principle, Schnirelmann then proved the following theorem.

Theorem (Schnirelmann, 1936). If A,B ⊂ N and 0 ∈ A ∩B then

A(n) +B(n) > n− 1

implies n ∈ A+B.

Using the two previous results, Schnirelmann was able to arrive at the following theo-
rem.

Theorem (Schnirelmann, 1936). Every sequence of positive density is a basis of N.

Now let Ak = {ak : a ∈ N}. If we prove that the density of

An
k = Ak + · · ·+Ak︸ ︷︷ ︸

n

is positive for some j, then Waring’s problem follows. In an interesting note, Henry
Mann in 1942 was able to prove the stronger statement:

Theorem (Mann, 1942). Let A,B ⊆ N. Then

d(A+B) ≥ d(A) + d(B)

provided that d(A) + d(B) ≤ 1. If d(A) + d(B) ≥ 1, then we have d(A+B) = 1.

6 Linnik’s Elementary Proof

Linnik’s proof is based on the fact that An
k has positive density for sufficiently large n.

If we show that, then we are done since we know from Schnirelmann’s thoerem above
that this means Ak forms a basis of N. Now recall that rk(m) denotes the number of
solutions(1). Most of the work in Linnik’s proof is hidden in the following claim.

Fundamental Lemma. There exists a natural number k depending only on n, and a
constant c, such that for all N ≥ 1,

rn(m) < cN (n/k)−1 (1 ≤ m ≤ N).

The proof of the Fundamental Lemma is very tedious so we will take it as a black
box. ([6] gives a proof of this lemma.) Linnik then showed that the Fundamental
Lemma implied that d(An

k) > 0 for some large n. To do this, he defined

Rn(N) = rn(0) + rn(1) + · · ·+ rn(N)

= #{ak1 + ak2 + · · ·+ akn ≤ N}.

By counting the number of possibilities to each ai, Linnik was able to show that

Rn(N) ≥
(
N

n

)n/k
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so Rn(N) is relatively large as N is arbitrary. Linnik’s arguments then can be sum-
meraized as follows. If d(An

k) = 0, then the number of integers m for which rn(m) > 0
is small. The Fundamental Lemma gives us that rn(m) < cN (n/k)−1 so Rn(N) would
be relatively small. However, Rn(N) is arbitarily large, which would give us a contra-
diction. Thus, d(An

k) must be positive and Waring’s problem is proved. This lemma is
interesting in other contexts besides Waring’s problem since it also holds for an arbitary
sum of polynomial equations. That is, if

f(x1) + f(x2) + · · ·+ f(xn) = m

then the number of solutions, rn(m) also satisfies the Fundamental Lemma.[5]

7 Generalizations

Waring’s problem has been generalized in different directions. In 1938, using methods
similar to that of Vinogradov, Hua Luogeng proved the following.[3]

Theorem (Hua, 1938). For k ∈ Z+ and for large enough N , we have

N = pk1 + pk2 + · · ·+ pkt

where pi’s are primes and t ≤ g(k).

This is often called the “Waring-Goldbach” problem. One known result relating to
Hua’s work is that every sufficiently large odd integer is the sum of 21 fifth powers of
primes[3].

Another interesting direction to generalize Waring’s problem was by E. Scourfield
in 1960.[3]

Theorem (Scourfield, 1960). If n1 ≤ n2 ≤ · · · is a sequence of positive integers,
then there exists a k ∈ Z+ such that every positive integer N can be written as

N =
r∑

i=1

x
ni+k
i xi ∈ Z+

for some fixed constant r if and only if
∞∑
i=1

1
ni

diverges.

There is also a variant of Waring’s problem in real fields and algebraic number
fields given in [7] as well as one where the kth powers come only from Beatty sequences
which can be found in [2].
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