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Abstract

When shuffling a deck of cards, one probably wants to make sure it is thoroughly shuffled. A
way to do this is by sifting through the cards to ensure that no adjacent cards are the same number,
because surely this is a poorly shuffled deck. Unfortunately, human intuition for probability tends
to lead us astray. For a standard 52-card deck of playing cards, the event is actually extremely
likely. This report will attempt to elucidate how to answer this surprisingly difficult combinatorial
question directly using rook polynomials. 1

1 Introduction

We will say that a shuffle of a standard 52-card deck is a perfect shuffle if any pair of adjacent cards in
the deck have a different value from one another.

Figure 1: An imperfect shuffle

Formally, we can see this as a permutation on 52 elements where the first four elements are of a
first color, the second four elements are of a second color, and on until the last four elements are of the
thirteenth color. Answering this problem was looked at in a 2013 IJPAM article by Yutaka Nishiyama
[4]. Unfortunately, the perspective he took to analyze the problem became very computationally
intensive for decks with 52 cards, so he used Monte Carlo methods to approximate the answer for the
52-card deck[4]. The only other places I have found the exact answer to this question is on a swedish
forum from 2009 [5] and a french blog from 2014 [3]. As far as I can tell, the two who answered these
questions computed the answer with brute force using more efficient code and more resources than
Nishiyama’s attempt. Here, we address the problem using Ira Gessel’s 1988 generalization of rook
polynomials to achieve a solution which is much less computationally restrictive [1].

1A special thanks to Srivatsa Srinivas for connecting Gessel’s polynomial to this problem.
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2 Introduction to Rook Polynomials

Rook polynomials were developed studying the number of ways to place rooks on a chessboard. Our
study will fairly closely follow a combination of Gessels’ work in [1] and [2]. For a given size of
chessboard, the rook polynomial counts the number of ways to place differing amounts of non-attacking
rooks on that chessboard. Let n ∈ N and let [n] denote {1, ..., n}. We consider our chessboard to be
[n] × [n]. Let a board, B, be a subset of the chessboard B ⊆ [n] × [n]. For this board, we define the
rook number rk(B) to be the number of ways to put k rooks onto this board such that none of them
are ‘attacking’ the other (none are in the same row or column). We will take B′ = {(2, 2), (3, 2), (3, 3)}
for our illustrative examples:

Figure 2: We see: r0(B′) = 1, r1(B′) = 3, and r2(B′) = 1.

Let Sn denote the set of permutations of [n]. We can associate each π ∈ Sn to another subset
of our chessboard. We do this with the set {(i, π(i)) : i ∈ [n]}. We can now see how many ‘hits’ each
permutation has with a given board. Formally, we can define a ‘hit function’

hB : Sn → N0 = 0, 1, 2, ...

hB(π) := |{(i, π(i)) : i ∈ [n]} ∩B|

The associated hit numbers count how many of the n! permutations hit that many times.

hk(B) := |{π ∈ Sn : hB(π) = k}| for k ∈ N0

Figure 3: We see: h0(B′) = 1, h1(B′) = 4, h2(B′) = 1.

2



We will now see the identity which relates the rook numbers and the hit numbers by considering
arrangements of rooks as partial permutations of [n].∑

i

hi(B)

(
i

j

)
= rj(B) · (n− j)! ∀j ∈ N0

Proof. This equality will be achieved by double counting the number of pairs (π,H) where π is a
permutation and H is a j-subset of the set of π’s hits ({(i, π(i)) : i ∈ [n]} ∩B)

The left-hand side picks π first. Call i the number of hits of π, i = hB(π), and then take all
(
i
j

)
subsets of the i hits which have size j. Since there are hi(B) permutations which have hit number i and
contribute

(
i
j

)
pairs to our sum, we have

∑
ihi(B)

(
i
j

)
pairs in total.

Figure 4: We first pick π = e and then choose the
(
2
1

)
different subsets (of size 1) of its 2 hits.

The right-hand side picks H first. We know that there are rj(B) subsets of the board which
have size j. For each of these, we can then extend them to a permutation by filling the empty rows and
columns in (n-j)! ways.

Figure 5: We first pick H = {(2, 2)} and extend to the (3− 1)! different permutations

2.1 Defining the Rook Polynomial

Given this identity for all j, we can multiply each of these identities by tj , yielding:∑
i

hi(B)

(
i

j

)
tj = rj(B) · (n− j)! · tj ∀j ∈ N0
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Summing over j yields ∑
i

hi(B)
∑
j

(
i

j

)
tj =

∑
j

rj(B) · (n− j)! · tj

∑
i

hi(B)(1 + t)i =
∑
j

rj(B) · (n− j)! · tj

Plugging in t = −1 yields

h0(B) =
∑
j

(−1)j · rj(B) · (n− j)!

This number h0(B) counts how many permutations totally avoid our subset B. This is the critical
identity which fuels the study of rook polynomials, but this identity can equally be derived through
the principle of inclusion and exclusion.

Regardless, corresponding to this equation, let us define the rook polynomial:

rB(x) :=
∑
k

(−1)k · rk(B) · xn−k

Let φ be a linear functional on polynomials in x with the effect:

φ(xk) = k!

Thus, h0(B) = φ(rB(x)) which may seem a little convoluted at first, but it results in the following
fantastic property:

rB1
(x)∗rB2

(x) = rB1⊕B2
(x). where B1⊕B2 is the direct sum of two boards as depicted below.

Figure 6: Direct sum of two boards

2.2 Implications of the Product Formula

Take ln(x) to be for the complete board ln(x) = r[n]×[n](x). We need to count the number of ways to
put k rooks on the nxn board. The first rook has n2 places to go, the second will then have (n − 1)2

places, then (n − 2)2, etc. Since we picked these with respect to order, we need to divide by the k!
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different orders to get the number of ways and then:

(n)2 · (n− 1)2 · ... · (n− (k − 1))2

k!
= k! · ((n) · (n− 1) · ... · (n− (k − 1)))2

(k!)2
= k! ·

(
n

k

)2

So, ln(x) =
∑n
k=0(−1)k

(
n
k

)2
k!xn−k. This allows to write the solution for the number of ‘generalized

derrangements.’

The number of permutations of n = n1 + ...+ nr objects where ni objects have the color i such
that i and π(i) have different colors is:

φ

( r∏
i=1

lni
(x)

)
This fact simply follows from our product of boards identity by using the full boards [ni]× [ni] and full
rook polynomials lni

(x). (The case of derrangements is ni = 1 for all i ∈ [r].) This result was proved
by Evens and Gillis in 1976, without using the connection to rook theory.

Figure 7: An example of a generalized derrangement with n1 = 3, n2 = 4, n3 = 4

3 Generalized Rook Polynomials

To generalize this rook polynomial beyond permutations of [n] and the conditions π(i) = j, we can use
Ira Gessel’s [1] definition of a generalized rook polynomial.

Let us have sets T0, T1, T2, ... which have cardinalities M0,M1,M2, ... . For each n ∈ N0 we will
additionally have a “set of conditions” Cn which satisfy C0 ⊆ C1 ⊆ C2 ⊆ .... To each condition c ∈ Cn
we will have a set T cn ⊆ Tn which are the elements of Tn which satisfy the condition. For a set of
multiple conditions A ⊆ Cn we will say the set satisfying all of these properties is TAn = ∩a∈AT an .

The following property is what we need to stay in the rook polynomial structure: If A ⊆ Cn,
one of the following occurs:

• TAm = ∅ for all m ≥ n. “A is incompatible”

• There is a ρ(A) ∈ N0 such that for every m ≥ n there is a bijection TAm → Tm−ρ(A)

Another technical condition we need is that our sequence (Mn) ∈ N0 does not satisfy any linear
homogeneous recurrence equation. This condition is needed so that ρ(A) will be uniquely determined
when it exists.
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For a set of conditions in Cn, take B ⊆ Cn. This means B ⊆ Cm for all m ≥ n. We want to
count the elements of Tm for m ≥ n which satisfy none of the conditions in B. We will denote this set
Tm/B. By inclusion-exclusion, we have that

Tm/B =
∑
A⊆B

compatible

(−1)|A| ·Mm−ρ(A)

Correspondingly, we will finally define our “generalized rook polynomial” to be:

rB(x) =
∑
A⊆B

compatible

(−1)|A| · xn−ρ(A)

If we define φ(xn) = |Tn| = Mn, then for all m ≥ n, |Tm/B| = φ(rB(x) · xm−n). Because of
our linear recurrence restriction on (Mn), this equation is actually able to uniquely determine rB(x).

This new definition still has the property that the product of the polynomials for two disjoint
‘boards’ are equal to the the polynomial of their disjoint attachment. This will again be useful to us.

3.1 Connection to the Original Rook Polynomial

We will first tie this more general definition back to our original setting. First, our sets Tn were the
sets of permutations of [n], so Tn = Sn for all n ∈ N0, hence Mn = n! for all n ∈ N0. The conditions are
slightly more tricky. These conditions are associated to the ‘boards’ which were subsets of [n]× [n] and
prescribed which spots on the board the permutations were not allowed to ‘hit.’ So, Cn = {“π(i) = j′′

for (i, j) ∈ [n]× [n]} and a set of conditions in Cn B ⊆ Cn is the same as a board B ⊆ [n]× [n]

We can now check if our original setting indeed satisfies the property of compatibility claimed
to be essential. Let A ⊆ Cn. Suppose there is a distinct pair (i, j), (i′, j′) ∈ A with i = i′ or j = j′,
then T am = ∅ and A is incompatible, because there is no permutation which sends one element to two
different values and there is no permutation which sends two elements to the same value. Otherwise,
there is a pretty simple bijection by seeing that each condition in A fixes exactly one input and output
of our permutation. Each time we fix an element of our permutation of n elements, we are left with
a permutation of (n-1) elements. This is the bijection SAm → Sm−|A| for all A which are compatible.
This means that ρ(A) = |A|.

Now we can see that our definitions now align because the compatible subsets of size k correspond
exactly to placements of non-attacking rooks onto the board:∑

k

(−1)k · rk(B) · xn−k = rB(x) =
∑
A⊆B

compatible

(−1)|A| · xn−ρ(A)

3.2 Linear Permutations

In this setting, we will also take Tn = Sn and Mn = n!, but our conditions will be very different.
Our elementary conditions will be “i is immediately followed by j” where we see a permutation as the
one-line notation. Equivalently, this condition is “for some k, π(k) = i and π(k + 1) = j.” So our set
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of conditions are Cn = {“i is immediately followed by j” : i 6= j ∈ [n]} and C0 ⊆ C1 ⊆ C2 ⊆ ... is
{} ⊆ {} ⊆ {“1 follows 2”, “2 follows 1” } ⊆ ...

We will now show that the compatibility property holds. Let A ⊆ Cn Similar to before, if we have
two distinct conditions (i, j), (i′, j′) ∈ A with i = i′ or j = j′, then A must be incompatible because
i = i′ can’t be immediately followed by two different numbers j, j′ or j = j′ can’t be immediately
preceded by two different numbers i, i′. Otherwise, the bijection to a permutation of a smaller number
of elements comes by viewing each adjacent pair i,j as a single element. Each time we group two
elements of our permutation of n elements, we are left with a permutation of (n-1) elements (where one
element consists of two). For larger strings of pairs i,j,k,l,... which are all adjacent we can see these
r elements all as one element or we can individually put together pairs of elements. Regardless, we
ultimately see that we have a bijection SAm → Sm−|A| for all A which are compatible. This means that
ρ(A) = |A|.

3.3 Product Formula Application

We will again take the full set of conditions in order to yield a useful formula. Take l∗n(x) = rCn
(x)

where Cn is defined as above.

We only need to look at compatible subsets, so we only need to pick elements in different rows
and columns if we see Cn as the chessboard without the diagonal. We will now choose a compatible
set of conditions of size k. The first condition we choose has n2−n = n(n− 1) places to go, the second
will then have (n− 1)2− (n− 1) = (n− 1)(n− 2) places, then (n− 2)(n− 3), etc. Since we picked these
in a particular order, we need to divide by the k! to correctly count the number of subsets of size k.

1

k!
· (n)(n−1) · (n−1)(n−2) · ... · (n− (k−1))(n−k) = k! · (n) · ... · (n− (k − 1))

k!
· (n− 1) · ... · (n− (k))

k!

= k! ·
(
n

k

)
·
(
n− 1

k

)

So, l∗n(x) =
∑n
k=0(−1)k

(
n
k

)
·
(
n−1
k

)
k!xn−k. This allows to write the solution for the number of a

specific type of linear permutation.

The number of linear arrangements of n = n1 + ...+nr objects where ni are of color i, such that
every adjacent object has a different colors is:

φ

( r∏
i=1

l∗ni
(x)

)

This work on generalized rook polynomials has many more applications. There are weighted
sums instead of simple counting and the polynomials are used on other sets than just permutations.
If you are interested in this style of combinatorics, I highly encourage you to check out Gessel’s paper
[1]. If you are not so interested, however, you are in luck because the linear permutation case is the
solution to our original problem.
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4 Solution

Our original problem asked about a set of 52 objects/ cards. We asked that our permutation had no
adjacent object of the same value. We can see that we have 13 different values which we can now see
as colors to see that we have 13 colors each with 4 associated objects/ cards. So, we can take r = 13
and ni = 4 for each i ∈ [r]. We first want to calculate

r∏
i=1

l∗ni
(x) = (l∗4(x))13

(l∗4(x))13 = −876488338465357824x13 + 17091522600074477568x14 − 159520877600695123968x15

+ 949054268820802240512 x16 − 4044281535242623254528x17 + 13151570567369808936960x18

- 33954920849889627734016 x19+71502295779064701517824x20−125212657768448227540992x21

+ 185006084370341623234560 x22−233228682051017005596672x23+253073982060156904538112x24

- 238025750670961148952576 x25+195147037097635696607232x26−140102373840493649854464x27

+ 88405409991914856382464 x28−49175456453520166748160x29+24169421980306186960896x30

- 10514786687648809353216 x31 + 4054104097647470051328x32 − 1386375667685767249920x33

+ 420612294417061773312 x34 − 113190888701156917248x35 + 27000049659200077824x36

- 5701677221962874880 x37 + 1063971192922619904x38 − 175008802134196224x39

+ 25291193280417792 x40 − 3197671558907904x41 + 351835440473088x42

- 33462483664896 x43 + 2727515172096x44 − 188444475648x45

+ 10878057216 x46 − 514605312x47 + 19420128x48

- 561912 x49 + 11700x50 − 156x51 + x52

So,
φ((l∗4(x))13) =

3, 668, 033, 946, 384, 704, 437, 729, 512, 814, 619, 767, 610, 579, 526, 911, 188, 666, 362, 431, 432, 294, 400

Hence, the probability of a perfect shuffle is:

φ((l∗4(x))13)

52!
=

672, 058, 204, 939, 482, 014, 438, 623, 912, 695, 190, 927, 357

14, 778, 213, 400, 262, 135, 041, 705, 388, 361, 938, 994, 140, 625
≈ 0.045476282331.

This means the chance of two adjacent cards being the same value is about 95.45%. Interestingly, in
the above probability, the numerator is prime and the denominator is 35 · 510 · 77 · 113 · 133 · 173 · 192 ·
232 · 29 · 31 · 37 · 41 · 43 · 47 which is always pb

51
p c except for the lower prime factors of 2,3 which points

to some small degree of symmetry in the space of “perfect shuffles”.
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5 Conclusion

The chance of a perfect shuffle is ≈ 4.5476282331% and the chance of not is ≈ 95.4523717669%. This
easy to formulate question had a surprisingly sophisticated but rather elegant solution. There are
some questions which are obvious future directions of this problem. The first is to consider how our
probability changes when we consider the first and last cards of the deck to be ‘adjacent’ to one another
so that our deck of cards becomes a cyclic object. The second is to consider instead of only h0(B) for
our situation where we count the number of permutations satisfying none of the properties, we instead
count each number which satisfy k of the properties (corresponding to hk(B).) This will then give a
distribution over the 52! permutations which count how many pairs of adjacent cards have the same
value for a given shuffle. Additionally, both of these questions can be asked simultaneously to give a
distribution over the cyclic shuffles. Hopefully this exposition was sufficient to understand the proof
behind the coveted ‘probability of a perfect shuffle’ and hopefully these future questions find their own
answers as well.
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