
Solutions to 2009 Gordon Exam

1. A spherical cherry of radius R is dropped into a glass of the form z = (x2 +y2)2. Find
the maximum R for which the cherry will reach the bottom of the glass.

Solution. Observe that because of the rotational sym-
metry the problem is equivalent to the following planar
one: What is the maximal radius R of a circle that can
be placed above the graph of z = x4, touching it at the
point (0, 0). Clearly the center of the circle can be
assumed to be on the z axis.

Thus we need to find the supremum of the set of
those R for which the system of equations

z = x4, x2 + z2 − 2Rz = 0

has no solutions other than (0, 0).

R

z = x4

Substituting in the second equation z with x4, we get x2 +x8 −2Rx4 = 0, or 1+x6 −
2Rx2 = 0; thus we need to find the supremum of the set of R for which the equation

1 + x6 − 2Rx2 = 0 (∗)

has no solutions. From this equation, R = 1
2 (x−2 + x4); the function 1

2(x−2 + x4) attains

its minumum at the point x = 1
6
√

2
, and this minumum is equal to 1

2

(

3
√

2 + 1
3
√

2

)

= 3
4

3
√

2.

Hence, the equation (∗) has solutions for R > 3
4

3
√

2 and has no solution for R < 3
4

3
√

2; so,

the maximum R for which “the cherry will reach the bottom of the glass” is 3
4

3
√

2.

Another approach: R is determined by the fact that
the polynomial t3 − 2Rt + 1 has a multiple positive
root. Thus, as a multiple root of a polynomial is also
a root of its derivative, we need to solve the system
t3 − 2Rt + 1 = 0, 3t2 − 2R = 0. We get t3 = 1

2 , and

R = 3
4

3
√

2.

t3 − 2Rt + 1

2. Is there a differentiable function f on (0,∞) satisfying f ′(x) = f(x + 1) for all x and
such that limx→∞ f(x) = ∞?

Solution. No, such a function cannot exist. Assume that f ′(x) = f(x + 1) for all x
and limx→∞ f(x) = +∞ (if limx→∞ f(x) = −∞, replace f by −f). Then for x large
enough f is positive, so f ′ is positive, so f is increasing, so f ′ is increasing. But for
any x, by the mean value theorem, f(x + 1) = f(x) + f ′(c) for some c ∈ [x, x + 1], so,
f ′(x) = f(x) + f ′(c) > f ′(c) if f(x) > 0, so f ′ cannot be increasing.
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3. Let a and b be real numbers. Consider the power series (in powers of x) for the
function f(x) = eax cos(bx). Show that the series either has no zero coefficients or has
infinitely many zero coefficients.

Solution. Since cos bx = Re eibx, we have f(x) = Re e(a+bi)x = Re ecx, where c = a+bi ∈ C.
Now, since ecx =

∑∞
n=0

1
n!c

nxn, the coefficients of the power series of f are of the form
1
n! Re(cn), and it remains to show that Re(cn) = 0 either for no n or for infinitely many n.

Let Arg(c) = θ. For any n ∈ N we have Arg(cn) = nθ, so Re(cn) = 0 iff nθ = π

2 mod π,
that is, iff nα = 1

2 mod1, where α = θ

π
. If α is an irrational number, then nα &= 1

2 mod1
for all n. If α = k

m
with k, m ∈ Z and m is odd, then also nα = nk

m
&= 1

2 mod1 for all n.
Finally, if α = k

m
where k is odd and m is even, then nα = nk

m
= 1

2 mod1 for all n of the
form lm + 1

2m, l ∈ Z, and so, for infinitely many n.

4. Show that there is no 2009 × 2009 matrix A with rational entries such that A2 = 2I,
where I is the identity matrix.

Solution 1. If A is a 2009 × 2009 matrix such that A2 = 2I, then det A2 = 22009, so
det A = ±21004

√
2 and is irrational. Hence, A cannot have all rational entries.

Solution 2. A has 2009 eigenvalues equal to
√

2 or −
√

2. Hence its trace, which is the
sum of the eigenvalues, cannot be rational, contradicting that A has rational entries.

5. Let X be the square [0, 1] × [0, 1] in the plane, and let |p − q| denote the distance
between points p, q ∈ X. Suppose that f : X −→ X is a surjective contraction; prove that f
is actually an isometry.

Solution. Let the vertices of X be A1A2A3A4. Con-
sider the pair A1, A3 of opposite vertices, then |A1 −
A3| =

√
2. Let a1, a3 ∈ X be such that f(a1) = A1

and f(a3) = A3; then |a1−a3| ≥ |f(a1)−f(a3)| =
√

2.
Hence, a1 and a3 is also a pair of opposite vertices of
X . The pair A2, A4 of opposite vertices is also an im-
age under f of a pair of opposite vertices, a2 and a4

respectively, which are different from a1 and a3.
A4 A3

A2A1

√
2

There is an isometry (a rotation and/or reflection) φ of X such that φ(ai) = Ai,
i = 1, 2, 3, 4; consider the mapping g = f ◦ φ−1. Then g is also a surjective contraction,
and g preserves the vertices of X : g(Ai) = f(φ−1(Ai)) = f(ai) = Ai, i = 1, 2, 3, 4. We will
show that g is the identity mapping, g(q) = q for all q ∈ X ; this will prove that f = φ and
is an isometry.
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We first claim that g is the identity on the bound-
ary of X . Take a point p on the boundary of X ; say,
let p ∈ [A1, A2]. Let |p − A1| = d; then p is the
unique point of X with the property that |p−A1| ≤ d,
|p − A2| ≤ 1 − d. Since f(A1) = A1 and f(A2) = A2,
we have |f(p) − A1| ≤ |p − A1| ≤ d and |f(p) − A2| ≤
|p − A2| ≤ 1 − d; hence, f(p) = p.

A4 A3

A2A1 p

d 1−d

We now claim that f is the identity on the interior
of X . Take a point q in the interior of X , let p1 and
p2 be the orthogonal projections of q to the opposite
sides [A1, A2] and [A3, A4] of X , and let |q − p1| = d.
Then q is the only point of X with the property that
|q − p1| ≤ d and |q − p2| ≤ 1 − d. Since f(p1) = p1

and f(p2) = p2, we have |f(q)− p1| ≤ |q− p1| ≤ d and
|f(q) − p2| ≤ |q − p2| ≤ 1 − d; hence, f(q) = q. A4 A3

A2A1 p1

p2

q
d

1−d

6. Assume that your calculator is broken so that you can only add and subtract real
numbers and compute their reciprocals. How can you use it to compute products?

Solution. First, let us observe that, given a
real number x, our broken calculator allows
us to compute x2. Indeed, for x &∈ {0,−1},
since 1

x
− 1

x+1 = 1
x2+x

we have

x2 = (x−1 − (x + 1)−1)−1 − x.

Note also that, given x, it is easy to cal-
culate x/2:

x

2
= (2x−1)−1 = (x−1 + x−1)−1.

Now, to calculate xy, we can use the
identity

xy =
(x + y

2

)2
−

(x − y

2

)2
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