Solutions to 2010 Gordon Prize examination problems

1. In the plane, consider an infinite strip of width d. Suppose every triangle of area 1 will fit inside the strip, after suitable translation and rotation. What is the minimum possible width d?
Solution. We claim that the minimum possible width d equals $\sqrt[4]{3}$, which is the height h of the equilateral triangle with area 1 (the triangle whose all sides are equal to $a=\frac{2}{\sqrt[4]{3}}$).

Indeed, if T is such a triangle that lies inside a strip of width d (see the picture), then since $\alpha+\beta+\pi / 3=\pi$, either $\alpha \geq \pi / 3$ or $\beta \geq \pi / 3$; if, say, $\alpha \geq \pi / 3$, then $d \geq a \sin \alpha \geq$ $a \sin (\pi / 3)=h$.

On the other hand, for any triangle P of area 1 , one of the sides of P has length $\geq a$. (If all sides of P have length $<a$, let γ be the minimal angle of P, so that $\gamma \leq \pi / 3$; then $\operatorname{area}(P)<\frac{1}{2} a^{2} \sin \gamma \leq \frac{1}{2} a^{2} \sin (\pi / 3)=1$.) The corresponding height of P is $\leq \frac{2 \text { area }(P)}{a}=$ $\frac{2}{2 / \sqrt[4]{3}}=\sqrt[4]{3}=h$, so P can be placed inside the strip of width h as in the following picture:

2. Let $A B C$ be a triangle with acute angles α, β and γ such that

$$
\tan (\alpha-\beta)+\tan (\beta-\gamma)+\tan (\gamma-\alpha)=0
$$

Prove that $A B C$ is isosceles.
Solution. Let $a=\tan \alpha, b=\tan \beta$, and $c=\tan \gamma$. Using the formula $\tan (x-y)=$ $\frac{\frac{\tan x-\tan y}{1+\tan x \tan y} \text {, we get }}{\text { a }}$

$$
\frac{a-b}{1+a b}+\frac{b-c}{1+b c}+\frac{c-a}{1+c a}=0
$$

Hence,
$(a-b)\left(1+b c+a c+a b c^{2}\right)+(b-c)\left(a+a b+a c+a^{2} b c\right)+(c-a)\left(1+a b+b c+a b^{2} c\right)=0$ After opening brackets and canceling similar terms, we get $a^{2} c-a^{2} b+b^{2} a-b^{2} c+c^{2} b-c^{2} a=$ 0 . Now,

$$
a^{2} c-a^{2} b+b^{2} a-b^{2} c+c^{2} b-c^{2} a=-a^{2}(b-c)+a\left(b^{2}-c^{2}\right)-b c(b-c)=(b-c)\left(-a^{2}+a b+a c-b c\right)
$$

$$
=(b-c)(a-b)(c-a)
$$

So, either $a=b$, or $b=c$, or $c=a$, which implies that either $\alpha=\beta$, or $\beta=\gamma$, or $\gamma=\alpha$.
 $\tan x+\tan y+\tan z=0$. Since $z=-(x+y)$ and $|z|<\pi / 2$, we have

$$
\tan (z)=-\tan (x+y)=\frac{-\tan (x)-\tan (y)}{1-\tan (x) \tan (y)}
$$

So,

$$
\tan (x)+\tan (y)+\tan (z)=\tan (x) \tan (y) \tan (z),
$$

and we obtain that $\tan (x) \tan (y) \tan (z)=0$. Hence, one of the angles x, y, or z is 0 ; without loss of generality, $x=0$, so $\alpha=\beta$, and $A B C$ is isosceles.

Yet another solution. Assume that $A B C$ is not isosceles. Let $\alpha>\beta>\gamma ;$ put $x=\alpha-\beta$, $y=\beta-\gamma$, and $z=\alpha-\gamma$. Then $0<x, y, z<\pi / 2, z=x+y$, and we are also given that $\tan z=\tan x+\tan y$.

But \tan is a strictly convex function on $[0, \pi / 2)$, thus given two points a, b with $0<a \leq b<\pi / 2$, the slope of the vector $(a, \tan a)$ is $\leq \tan ^{\prime} a \leq \tan ^{\prime} b$; thus the point $(b, \tan b)+(a, \tan a)=(a+b, \tan a+\tan b)$ lies strictly below the graph of the tangent, and it cannot be that $\tan (a+b)=\tan a+\tan b$.
3. The number 2010 is written as a sum of two or more positive integers. What is the maximum possible product of these integers?

Solution. There are only finitely many ways to decompose 2010 into a sum of positive integers, so there is a maximum value for the product of such a decomposition. Let a_{1}, \ldots, a_{k} be positive integers such that $a_{1}+\ldots+a_{k}=2010$ and the product $P=\prod_{i=1}^{2010} a_{i}$ is maximal. Then
(i) none of a_{i} is 1 , since if $a_{i}=1$ for some i then we can replace the pair a_{1}, a_{i} by the singleton $a_{1}+1$, and thereby increase the product P;
(ii) none of a_{i} is greater or equal than 5 , since if $a_{i}=5$, we can replace a_{i} by the pair $a_{i}-2,2$ and increase P;
(iii) moreover, we can assume no a_{i} is equal to 4 , since 4 can be replaced by the pair 2,2 without changing P;
(iv) at most two of a_{i} are equal to 2 , since otherwise we can change $2,2,2$ to 3,3 and increase P.
So, the only possible combinations for which P is maximal are $3,3,3, \ldots, 3$, or $2,3,3, \ldots, 3$, or $2,2,3, \ldots, 3$. But since 2010 is divisible by 3 , the last 2 solutions do not come up, and the maximum possible product is 3^{670}.
4. Let A be a 2010×2010 matrix such that in every row and in every column, exactly two entries are equal to 1 and the rest are 0. Prove that the determinant of A is either 0 or $\pm 2^{m}$ where m is even.

Solution. The determinant of a matrix does not change, up to the sign, under permutation of rows or columns of a matrix, thus we are free to permute rows and columns of A. Permuting columns of A, we can move the 1 s in the first row to the left side, so that the first line of A will become ($110 \ldots 0$). Then we find the row that contains 1 at the second column, permute it with the second line, and, if the another 1 in this row is not at the first column, move it to the 3rd column, so that the first two rows of A now become either $\left(\begin{array}{lllll}1 & 1 & 0 & \ldots & 0 \\ 1 & 1 & 0 & \ldots & 0\end{array}\right)$ or $\left(\begin{array}{lllll}1 & 1 & 0 & \ldots & 0 \\ 0 & 1 & 1 & \ldots & 0\end{array}\right)$. In the second case, we continue the process (find the row that has 1 at the 3rd column, etc.), until, for some $n_{1} \leq 2010$, we meet the row that has 1 at the first column; the first n_{1} rows of A now become $\left(\begin{array}{cccccccc}1 & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots\end{array}\right)$

We then pass to the rows and columns of A from $\left(n_{1}+1\right)$ st to 2010th, and repeat the procedure. After m such steps, we reduce A to the form $\left(\begin{array}{cccc}A_{1} & 0 & \ldots & 0 \\ 0 & A_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \ldots & A_{m}\end{array}\right)$, where for each j, A_{j} is an $n_{j} \times n_{j}$ matrix of the form $\left(\begin{array}{cccccc}1 & 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \ldots & 0 & 0 \\ 0 & 0 & \ldots & \vdots \\ 1 & 0 & 0 & \ldots & 1 & 1 \\ 1\end{array}\right)$.

We now have $n_{1}+\ldots+n_{m}=2010$ and $\operatorname{det} A=\prod_{j=1}^{m} \operatorname{det} A_{j}$. The determinant of each block A_{j} equals 1 ± 1 : it is 0 if n_{j} is even, and 2 if n_{j} is odd. Thus, if n_{j} is even for some j, then $\operatorname{det} A=0$; if all n_{j} are odd, then $\operatorname{det} A= \pm 2^{m}$, and in this case, since 2010 is even, m is even.

5. Evaluate $\lim _{n \rightarrow \infty} n \sin (2 \pi n!e)$.

$\underline{\text { Solution }}$. Everyone knows that $e=\sum_{k=0}^{\infty} \frac{1}{k!}$. Thus, for any $n \in \mathbb{N}$, we have $n!e=m_{n}+t_{n}$, where $m_{n}=\sum_{k=0}^{n} \frac{n!}{k!}$ is an integer and $t_{n}=\sum_{k=n+1}^{\infty} \frac{n!}{k!}$. Since sin is a 2π-periodic function, for any $n \in \mathbb{N}$ we get $\sin (2 \pi n!e)=\sin \left(2 \pi m_{n}+2 \pi t_{n}\right)=\sin \left(2 \pi t_{n}\right)$.

Next, for any $k \geq n+1, \frac{n!}{k!}=\frac{1}{(n+1)(n+2) \ldots k}<\frac{1}{(n+1)^{k-n}}$, so

$$
\frac{1}{n+1}<t_{n}<\sum_{k=n+1}^{\infty} \frac{1}{(n+1)^{k-n}}=\frac{1}{n+1} \cdot \frac{1}{1-\frac{1}{n+1}}=\frac{1}{n}
$$

Since both $n \sin \left(\frac{2 \pi}{n+1}\right)=\frac{\sin \left(\frac{2 \pi}{n+1}\right)}{1 / n} \longrightarrow 2 \pi$ and $n \sin \left(\frac{2 \pi}{n}\right)=\frac{\sin \left(\frac{2 \pi}{n}\right)}{1 / n} \longrightarrow 2 \pi$ as $n \rightarrow \infty$, by the squeeze theorem $\lim _{n \rightarrow \infty} n \sin \left(2 \pi t_{n}\right)=2 \pi$, and so $\lim _{n \rightarrow \infty} n \sin (2 \pi n!e)=2 \pi$.
6. Let α be a real number. Find $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}1 & \alpha / n \\ -\alpha / n & 1\end{array}\right)^{n}$.

Solution. It is well known(!) that the ring of 2×2 real matrices of the form $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ is isomorphic to the field of complex numbers, where the isomorphism is given by the formula $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \leftrightarrow a+b i \in \mathbb{C}$ and is a mapping continuous in both directions. $\left(\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\right.$ is the matrix of the linear transformation $z \mapsto(a+b i) z$ of $\mathbb{C}=\mathbb{R}^{2}$.) Since $\lim _{n \rightarrow \infty}\left(1+\frac{i \alpha}{n}\right)^{n}=$ $e^{i \alpha}=\cos \alpha+i \sin \alpha$, we obtain $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}1 & \alpha / n \\ -\alpha / n & 1\end{array}\right)^{n}=\binom{\cos \alpha \sin \alpha}{-\sin \alpha \cos \alpha}$.
$\underline{\text { Another solution. For any } n,\left(\begin{array}{cc}1 & \alpha / n \\ -\alpha / n & 1\end{array}\right)=r_{n}\left(\begin{array}{cc}\cos \alpha_{n} & \sin \alpha_{n} \\ -\sin \alpha_{n} & \cos \alpha_{n}\end{array}\right) \text {, where } r_{n}=\sqrt{1+\left(\frac{\alpha}{n}\right)^{2}}}$ and $\alpha_{n}=\arctan (\alpha / n), n \in \mathbb{N}$; thus $\left(\begin{array}{cc}1 & \alpha / n \\ -\alpha / n & 1\end{array}\right)^{n}=r_{n}^{n}\left(\begin{array}{cc}\cos n \alpha_{n} & \sin n \alpha_{n} \\ -\sin n \alpha_{n} & \cos n \alpha_{n}\end{array}\right)$. Since $r_{n}^{n}=$ $\sqrt{\left(1+\frac{\alpha^{2}}{n^{2}}\right)^{n}} \longrightarrow 1$ and $n \alpha_{n}=n \arctan (\alpha / n) \rightarrow \alpha$ as $n \rightarrow \infty$, we get $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}1 & \alpha / n \\ -\alpha / n & 1\end{array}\right)^{n}=$ $\binom{\cos \alpha \sin \alpha}{-\sin \alpha \cos \alpha}$.
 and $1-\frac{\alpha}{n} i$ (these are the roots of the polynomial $(1-x)^{2}+\frac{\alpha^{2}}{n^{2}}$), and the corresponding eigenvector are $\binom{1}{i}$ and $\binom{1}{-i}$. So $R_{n}=P\left(\begin{array}{cc}1+\frac{\alpha}{n} i & 0 \\ 0 & 1-\frac{\alpha}{n} i\end{array}\right) P^{-1}$ where $P=\left(\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right)$. Hence,
$R_{n}^{n}=P\left(\begin{array}{cc}1+\frac{\alpha}{n} i & 0 \\ 0 & 1-\frac{\alpha}{n} i\end{array}\right)^{n} P^{-1}=P\left(\begin{array}{cc}\left(1+\frac{\alpha}{n} i\right)^{n} & 0 \\ 0 & \left(1-\frac{\alpha}{n} i\right)^{n}\end{array}\right) P^{-1}$. Since $\lim _{n \rightarrow \infty}\left(1 \pm \frac{\alpha}{n} i\right)^{n}=e^{ \pm i \alpha}$, we get $\lim _{n \rightarrow \infty} R_{n}^{n}=P\left(\begin{array}{cc}e^{i \alpha} & 0 \\ 0 & e^{-i \alpha}\end{array}\right) P^{-1}=\frac{1}{2}\left(\begin{array}{c}e^{i \alpha}+e^{-i \alpha} \\ i e^{i \alpha}-i e^{-i \alpha}\end{array} e^{i \alpha}+e^{-i \alpha}+i e^{-i \alpha}\right)=\binom{\cos \alpha \sin \alpha}{-\sin \alpha \cos \alpha}$.
$\underline{\text { And one more solution. }}$. Observe that for the matrix $A=\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right)$ one has $A^{2}=\left(\begin{array}{cc}-a^{2} & 0 \\ 0 & -a^{2}\end{array}\right)$, $A^{3}=\left(\begin{array}{cc}0 & -a^{3} \\ a^{3} & 0\end{array}\right)$, etc. Thus, for any n,

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & \alpha / n \\
-\alpha / n & 1
\end{array}\right)^{n}=\left(I+\left(\begin{array}{cc}
0 & \alpha / n \\
-\alpha / n & 0
\end{array}\right)\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} & \left(\begin{array}{cc}
0 & \alpha / n \\
-\alpha / n & 0
\end{array}\right)^{k} \\
& =\left(\begin{array}{cc}
1-\binom{n}{2} \frac{\alpha^{2}}{n^{2}}+\binom{n}{4} \frac{\alpha^{4}}{n^{4}}+\ldots & n \frac{\alpha}{n}-\binom{n}{3} \frac{\alpha^{3}}{n^{3}}+\binom{n}{5} \frac{\alpha^{5}}{n^{5}} \ldots \\
-n \frac{\alpha}{n}+\binom{n}{3} \frac{\alpha^{3}}{n^{3}}-\binom{n}{5} \frac{\alpha^{5}}{n^{5}} \ldots & 1-\binom{n}{2} \frac{\alpha^{2}}{n^{2}}+\binom{n}{4} \frac{\alpha^{4}}{n^{4}}+\ldots
\end{array}\right)
\end{aligned}
$$

It remains to show that $\lim _{n \rightarrow \infty} \sum_{k=0}^{[n / 2]}(-1)^{k}\binom{n}{2 k} \frac{\alpha^{2 k}}{n^{2 k}}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\alpha^{2 k}}{(2 k)!}=\cos \alpha$ and $\lim _{n \rightarrow \infty} \sum_{k=0}^{[(n-1) / 2]}(-1)^{k}\binom{n}{2 k} \frac{\alpha^{2 k}}{n^{2 k}}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\alpha^{2 k+1}}{(2 k+1)!}=\sin \alpha$.

We will prove this for the cos function only, the proof for sin is similar. Observe that for any $k \in \mathbb{N},\binom{n}{k} \frac{\alpha^{k}}{n^{k}}=\frac{n(n-1) \ldots(n-k+1)}{n^{k}} \frac{\alpha^{k}}{k!} \longrightarrow \frac{\alpha^{k}}{k!}$ as $n \rightarrow \infty$. Let $\varepsilon>0$. The series $\sum_{k=0}^{\infty} \frac{|\alpha|^{2 k}}{(2 k)!}$ converges, thus there exists N such that $\sum_{k=[N / 2]+1}^{\infty} \frac{|\alpha|^{2 k}}{(2 k)!}<\varepsilon$. Then also $\left|\sum_{k=[N / 2]+1}^{\infty}(-1)^{k} \frac{\alpha^{2 k}}{(2 k)!}\right|<\varepsilon$, and for any $n>N$,

$$
\left|\sum_{k=[N / 2]+1}^{[n / 2]}(-1)^{k}\binom{n}{2 k} \frac{\alpha^{2 k}}{n^{2 k}}\right|<\varepsilon
$$

Since $\binom{n}{2 k} \frac{\alpha^{2 k}}{n^{2 k}} \longrightarrow \frac{\alpha^{2 k}}{(2 k)!}$ for $k=0, \ldots,[N / 2]$, if $n>N$ is large enough we also have

$$
\left|\sum_{k=0}^{[N / 2]}(-1)^{k}\binom{n}{2 k} \frac{\alpha^{2 k}}{n^{2 k}}-\sum_{k=0}^{[N / 2]}(-1)^{k} \frac{\alpha^{2 k}}{(2 k)!}\right|<\varepsilon
$$

Hence, for such n,

$$
\left|\sum_{k=0}^{[n / 2]}(-1)^{k}\binom{n}{2 k} \frac{\alpha^{2 k}}{n^{2 k}}-\sum_{k=0}^{\infty}(-1)^{k} \frac{\alpha^{2 k}}{(2 k)!}\right|<3 \varepsilon
$$

