
Solutions to 2010 Gordon Prize examination problems

1. In the plane, consider an infinite strip of width d. Suppose every triangle of area 1 will

fit inside the strip, after suitable translation and rotation. What is the minimum possible

width d?

Solution. We claim that the minimum possible
width d equals 4

√
3, which is the height h of the

equilateral triangle with area 1 (the triangle
whose all sides are equal to a = 2

4
√

3
).

Indeed, if T is such a triangle that lies
inside a strip of width d (see the picture), then
since α + β + π/3 = π, either α ≥ π/3 or
β ≥ π/3; if, say, α ≥ π/3, then d ≥ a sinα ≥
a sin(π/3) = h.

On the other hand, for any triangle P
of area 1, one of the sides of P has length
≥ a. (If all sides of P have length < a, let γ
be the minimal angle of P , so that γ ≤ π/3;
then area(P ) < 1

2
a2 sin γ ≤ 1

2
a2 sin(π/3) = 1.)

The corresponding height of P is ≤ 2 area(P )
a

=
2

2/ 4
√

3
= 4

√
3 = h, so P can be placed inside the

strip of width h as in the following picture:
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2. Let ABC be a triangle with acute angles α, β and γ such that

tan(α − β) + tan(β − γ) + tan(γ − α) = 0.

Prove that ABC is isosceles.

Solution. Let a = tanα, b = tanβ, and c = tan γ. Using the formula tan(x − y) =
tan x−tan y
1+tan x tan y

, we get

a − b

1 + ab
+

b − c

1 + bc
+

c − a

1 + ca
= 0.

Hence,

(a − b)(1 + bc + ac + abc2) + (b − c)(a + ab + ac + a2bc) + (c − a)(1 + ab + bc + ab2c) = 0

After opening brackets and canceling similar terms, we get a2c−a2b+b2a−b2c+c2b−c2a =
0. Now,

a2c−a2b+b2a−b2c+c2b−c2a = −a2(b−c)+a(b2−c2)−bc(b−c) = (b−c)(−a2+ab+ac−bc)

= (b − c)(a − b)(c − a)

So, either a = b, or b = c, or c = a, which implies that either α = β, or β = γ, or γ = α.

Another solution. Let x = α − β, y = β − γ, and z = γ − α, then x + y + z = 0 and
tan x + tan y + tan z = 0. Since z = −(x + y) and |z| < π/2, we have

tan(z) = − tan(x + y) =
− tan(x) − tan(y)

1 − tan(x) tan(y)
.
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So,
tan(x) + tan(y) + tan(z) = tan(x) tan(y) tan(z),

and we obtain that tan(x) tan(y) tan(z) = 0. Hence, one of the angles x, y, or z is 0;
without loss of generality, x = 0, so α = β, and ABC is isosceles.

Yet another solution. Assume that ABC is not isosceles. Let α > β > γ; put x = α − β,
y = β − γ, and z = α − γ. Then 0 < x, y, z < π/2, z = x + y, and we are also given that
tan z = tanx + tan y.

But tan is a strictly convex function on [0, π/2), thus given two points a, b with
0 < a ≤ b < π/2, the slope of the vector (a, tana) is ≤ tan′ a ≤ tan′ b; thus the point
(b, tan b) + (a, tana) = (a + b, tana + tan b) lies strictly below the graph of the tangent,
and it cannot be that tan(a + b) = tana + tan b.

3. The number 2010 is written as a sum of two or more positive integers. What is the

maximum possible product of these integers?

Solution. There are only finitely many ways to decompose 2010 into a sum of positive
integers, so there is a maximum value for the product of such a decomposition. Let
a1, . . . , ak be positive integers such that a1 + ...+ak = 2010 and the product P =

∏2010
i=1 ai

is maximal. Then
(i) none of ai is 1, since if ai = 1 for some i then we can replace the pair a1, ai by the
singleton a1 + 1, and thereby increase the product P ;
(ii) none of ai is greater or equal than 5, since if ai = 5, we can replace ai by the pair
ai − 2, 2 and increase P ;
(iii) moreover, we can assume no ai is equal to 4, since 4 can be replaced by the pair 2, 2
without changing P ;
(iv) at most two of ai are equal to 2, since otherwise we can change 2, 2, 2 to 3, 3 and
increase P .
So, the only possible combinations for which P is maximal are 3,3,3,...,3, or 2,3,3,...,3, or
2,2,3,...,3. But since 2010 is divisible by 3, the last 2 solutions do not come up, and the
maximum possible product is 3670.

4. Let A be a 2010 × 2010 matrix such that in every row and in every column, exactly

two entries are equal to 1 and the rest are 0. Prove that the determinant of A is either 0
or ±2m where m is even.

Solution. The determinant of a matrix does not change, up to the sign, under permutation
of rows or columns of a matrix, thus we are free to permute rows and columns of A.
Permuting columns of A, we can move the 1s in the first row to the left side, so that the
first line of A will become (1 1 0 ... 0). Then we find the row that contains 1 at the second
column, permute it with the second line, and, if the another 1 in this row is not at the
first column, move it to the 3rd column, so that the first two rows of A now become either
(1 1 0 ... 0
1 1 0 ... 0) or (1 1 0 ... 0

0 1 1 ... 0). In the second case, we continue the process (find the row that has
1 at the 3rd column, etc.), until, for some n1 ≤ 2010, we meet the row that has 1 at the

first column; the first n1 rows of A now become

(1 1 0 ... 0 0 0 ... 0
0 1 1 ... 0 0 0 ... 0...
...
... ...

...
...
... ...

...
0 0 0 ... 1 1 0 ... 0
1 0 0 ... 0 1 0 ... 0

)

.
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We then pass to the rows and columns of A from (n1 +1)st to 2010th, and repeat the

procedure. After m such steps, we reduce A to the form

(

A1 0 ... 0
0 A2 ... 0...

...
...

0 0 ... Am

)

, where for each j,

Aj is an nj × nj matrix of the form

(1 1 0 ... 0 0
0 1 1 ... 0 0...
...
... ...

...
...

0 0 0 ... 1 1
1 0 0 ... 0 1

)

.

We now have n1 + . . . + nm = 2010 and det A =
∏m

j=1 det Aj. The determinant of
each block Aj equals 1 ± 1: it is 0 if nj is even, and 2 if nj is odd. Thus, if nj is even for
some j, then det A = 0; if all nj are odd, then det A = ±2m, and in this case, since 2010
is even, m is even.

5. Evaluate lim
n→∞

n sin(2πn!e).

Solution. Everyone knows that e =
∑∞

k=0
1
k!

. Thus, for any n ∈ N, we have n!e = mn + tn,

where mn =
∑n

k=0
n!
k!

is an integer and tn =
∑∞

k=n+1
n!
k!

. Since sin is a 2π-periodic function,
for any n ∈ N we get sin(2πn!e) = sin(2πmn + 2πtn) = sin(2πtn).

Next, for any k ≥ n + 1, n!
k!

= 1
(n+1)(n+2)...k

< 1
(n+1)k−n , so

1

n + 1
< tn <

∞
∑

k=n+1

1

(n + 1)k−n
=

1

n + 1
· 1

1 − 1
n+1

=
1

n

Since both n sin
(

2π
n+1

)

=
sin( 2π

n+1
)

1/n
−→ 2π and n sin

(

2π
n

)

=
sin( 2π

n
)

1/n
−→ 2π as n → ∞, by

the squeeze theorem limn→∞ n sin(2πtn) = 2π, and so limn→∞ n sin(2πn!e) = 2π.

6. Let α be a real number. Find lim
n→∞

(

1 α/n
−α/n 1

)n

.

Solution. It is well known(!) that the ring of 2 × 2 real matrices of the form
(

a b
−b a

)

is isomorphic to the field of complex numbers, where the isomorphism is given by the
formula

(

a b
−b a

)

↔ a + bi ∈ C and is a mapping continuous in both directions. (
(

a b
−b a

)

is the

matrix of the linear transformation z 7→ (a + bi)z of C = R
2.) Since limn→∞

(

1 + iα
n

)n
=

eiα = cos α + i sin α, we obtain lim
n→∞

(

1 α/n

−α/n 1

)n

=
(

cos α sin α
− sin α cos α

)

.

Another solution. For any n,
(

1 α/n

−α/n 1

)

= rn

(

cos αn sin αn

− sin αn cos αn

)

, where rn =
√

1 + (α
n )2

and αn = arctan(α/n), n ∈ N; thus
(

1 α/n

−α/n 1

)n

= rn
n

(

cos nαn sinnαn

− sinnαn cos nαn

)

. Since rn
n =

√

(

1 + α2

n2

)n −→ 1 and nαn = n arctan(α/n) → α as n → ∞, we get lim
n→∞

(

1 α/n

−α/n 1

)n

=
(

cos α sin α
− sin α cos α

)

.

Yet another solution. For any n ∈ N, the matrix Rn =
(

1 α/n

−α/n 1

)

has eigenvalues 1 + α
n
i

and 1 − α
n
i (these are the roots of the polynomial (1 − x)2 + α2

n2 ), and the corresponding

eigenvector are
(

1
i

)

and
(

1
−i

)

. So Rn = P
(

1+ α

n
i 0

0 1−α

n
i

)

P−1 where P =
(

1 1
i −i

)

. Hence,
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Rn
n = P

(

1+ α

n
i 0

0 1−α

n
i

)n

P−1 = P
(

(1+ α

n
i)n 0

0 (1−α

n
i)n

)

P−1. Since limn→∞(1 ± α
n i)n = e±iα, we

get limn→∞ Rn
n = P

(

eiα 0
0 e−iα

)

P−1 = 1
2

(

eiα+e−iα −ieiα+ie−iα

ieiα−ie−iα eiα+e−iα

)

=
(

cos α sin α

− sin α cos α

)

.

And one more solution. Observe that for the matrix A =
(

0 a
−a 0

)

one has A2 =
(

−a2 0

0 −a2

)

,

A3 =
(

0 −a3

a3 0

)

, etc. Thus, for any n,

(

1 α/n

−α/n 1

)n

=
(

I +
(

0 α/n

−α/n 0

))n

=

n
∑

k=0

(

n

k

)

(

0 α/n

−α/n 0

)k

=

(

1−(n

2)
α
2

n2 +(n

4)
α
4

n4 +... n α

n
−(n

3)
α
3

n3 +(n

5)
α
5

n5 ...

−n α

n
+(n

3)
α
3

n3 −(n

5)
α
5

n5 ... 1−(n

2)
α
2

n2 +(n

4)
α
4

n4 +...

)

It remains to show that limn→∞
∑[n/2]

k=0 (−1)k
(

n
2k

)

α2k

n2k =
∑∞

k=0(−1)k α2k

(2k)! = cos α and

limn→∞
∑[(n−1)/2]

k=0 (−1)k
(

n
2k

)

α2k

n2k =
∑∞

k=0(−1)k α2k+1

(2k+1)!
= sin α.

We will prove this for the cos function only, the proof for sin is similar. Observe

that for any k ∈ N,
(

n
k

)

αk

nk = n(n−1)...(n−k+1)
nk

αk

k!
−→ αk

k!
as n → ∞. Let ε > 0. The

series
∑∞

k=0
|α|2k

(2k)! converges, thus there exists N such that
∑∞

k=[N/2]+1
|α|2k

(2k)! < ε. Then

also
∣

∣

∑∞
k=[N/2]+1(−1)k α2k

(2k)!

∣

∣ < ε, and for any n > N ,

∣

∣

∣

[n/2]
∑

k=[N/2]+1

(−1)k

(

n

2k

)

α2k

n2k

∣

∣

∣
< ε.

Since
(

n
2k

)

α2k

n2k −→ α2k

(2k)! for k = 0, . . . , [N/2], if n > N is large enough we also have

∣

∣

∣

[N/2]
∑

k=0

(−1)k

(

n

2k

)

α2k

n2k
−

[N/2]
∑

k=0

(−1)k α2k

(2k)!

∣

∣

∣
< ε.

Hence, for such n,

∣

∣

∣

[n/2]
∑

k=0

(−1)k

(

n

2k

)

α2k

n2k
−

∞
∑

k=0

(−1)k α2k

(2k)!

∣

∣

∣
< 3ε.
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