
Solutions to 2011 Gordon Prize examination problems

1. Let 1 ≤ a1, . . . , a1006 ≤ 2011 be distinct positive integers. Prove that there exist i, j such that ai + aj =
2012.

Solution. Of course, there is nothing special in 2011, except that this is the current year A.D.; we will prove
that for any n ∈ N, if A is an n-element subset of {1, . . . , 2n − 1} then there are a, b ∈ A with a + b = 2n.
Indeed, let B = 2n−A =

{

2n− a, a ∈ A
}

. Then B ⊂ {1, . . . , 2n− 1} and |B| = |A| = n, so A∩B 6= ∅. Let
a ∈ A ∩ B; since a ∈ B, we have b = 2n − a ∈ A, and so, a, b ∈ A, a + b = 2n.

2. Let g(x) = a0x
r0 + a1x

r1 + a2x
r2 + . . .+ a2011x

r2011 , x > 0, where a0, . . . , a2011 are nonzero real numbers

and r0, . . . , r2011 are distinct real numbers. Prove that g has at most 2011 zeroes in (0,∞).

Solution. Again, 2011 appears here for fun only; we will prove by induction that for any n ≥ 0, nonzero real
numbers a0, . . . , an and distinct real numbers r0, . . . , rn the function g(x) = a0x

r0+a1x
r1 +a2x

r2 +. . .+anxrn

has at most n zeroes in (0,∞). For n = 0 this statement is trivial. Let f(x) = x−r0g(x) = a0 + a1x
s1 +

a2x
s2 + . . . + anxsn , where si = ri − r0, i = 1, . . . , n; then f has the same zeroes in (0,∞) as g. We have

f ′(x) = a1s1x
s1−1 + a2s2x

s2−1 + . . . + ansnxsn−1, which, after collecting simular terms, takes the form
f ′(x) = b0x

p0 + b1x
p1 + . . . + bmxpm for some m < n, nonzero bi and distinct pi. (If f ′ = 0, then f is

constant, and so, has no roots at all (f cannot be equal to zero identically since ai are nonzero); thus, we
may assume that the expression for f ′ is nontrivial.) By (complete) induction, f ′ has at most m zeroes. But
then f has at most m + 1 ≤ n zeroes, since, by Rolle’s theorem, between any two roots of f there is a root
of f ′.

3. Prove that the “Pascal matrix” Pn =















1 1 1 . . . 1
1 2 3 . . . n
1 3 6 . . .

(

n+1
n−1

)

...
...

...
...

1 n
(

n+1
2

)

. . .
(

2n−2
n−1

)















has determinant 1.

Solution. The (i, j)th element of Pn is
(

i+j−2
j−1

)

. Let us subtract from each row of Pn, starting from the last

one and excepting the first one, the preceding row; then the (i, j)th element, with i ≥ 2, of the obtained
matrix P ′

n is
(

i+j−2
j−1

)

−
(

i+j−3
j−1

)

=
(

i+j−3
j−2

)

(we use the identity
(

m
k

)

=
(

m−1
k

)

+
(

m−1
k−1

)

):

P ′
n =















1 1 1 . . . 1
0 1 2 . . . n − 1
0 1 3 . . .

(

n

n−2

)

...
...

...
...

0 1 n . . .
(

2n−3
n−2

)















Now subtract from each column of P ′
n starting from the last one and excepting the first one, the preceding

column; then the (i, j)th element, with i, j ≥ 2, of the obtained matrix P ′′
n is

(

i+j−3
j−2

)

−
(

i+j−4
j−3

)

=
(

i+j−4
j−2

)

:

P ′′
n =













1 0 0 . . . 0
0 1 1 . . . 1
0 1 2 . . . n − 1
...

...
...

...
0 1 n − 1 . . .

(

2n−4
n−2

)













=

(

1 0
0 Pn−1

)

,

where Pn−1 the the “Pascal matrix” of size (n − 1) × (n − 1). By induction on n, det Pn−1 = 1, and so,
detP ′′

n = 1. Since the row-column operations do not affect the determinant of a matrix, we obtain that
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detPn = detP ′′
n = 1.

Another solution. We claim that Pn = LnUn, where

Ln =















(

0
0

)

0 0 . . . 0
(

1
0

) (

1
1

)

0 . . . 0
(

2
0

) (

2
1

) (

2
2

)

. . . 0
...

...
...

...
(

n−1
0

) (

n−1
1

) (

n−1
2

)

. . .
(

n−1
n−1

)















and Un =















(

0
0

) (

1
0

) (

2
0

)

. . .
(

n−1
0

)

0
(

1
1

) (

2
1

)

. . .
(

n−1
1

)

0 0
(

2
2

)

. . .
(

n−1
2

)

...
...

...
...

0 0 0 . . .
(

n−1
n−1

)















= Lt
n;

since det Ln = detUn = 1, this implies that det Pn = 1.
Indeed, if we assume that

(

i
k

)

= 0 for k > i, then the (i, j)-th entry of Ln is
(

i−1
j−1

)

and the (i, j)-th entry

of Un is
(

j−1
i−1

)

, i = 1, . . . , n, j = 1, . . . , n. Hence, the (i, j)-th entry of LnUn is equal to
∑n

k=1

(

i−1
k−1

)(

j−1
k−1

)

,

which is (well known to be) equal to
(

i+j−2
j−1

)

, the (i, j)-th entry of Pn.

4. Let a, b, c be distinct complex numbers. Prove that the triangle △abc is equilateral iff

a2 + b2 + c2 = ab + bc + ca (∗)

Solution. The triangle △abc is equilateral iff its side
c−a is obtained from its side b−a by the rotation by

±π/3, that is, if c− a = γ(b− a) where γ = 1
2 ±

√
3

2 i:
b

b

b

a
b = a + x

c = a + γx

x

γx

We will now show that the equation (∗) is also equivalent to c − a = γ(b − a). Put x = b − a and
α = (c − a)/(b − a), so that b = a + x and c = a + αx; then the equation (∗) is equivalent to

a2 + (a2 + 2ax + x2) + (a2 + 2aαx + α2x2) = (a2 + ax) + (a2 + aαx + ax + αx2) + (a2 + aαx),

which after all the cancelations takes the form

α2 − α + 1 = 0,

which holds iff α = 1
2 ±

√
3

2 i.

Another solution. The equation (∗) is equivalent to

a2 + b2 + b2 + c2 + c2 + a2 = 2ab + 2bc + 2ca,

that is, to

(a − b)2 + (b − c)2 + (c − a)2 = 0.

This equation is, clearly, invariant under shifts (when a, b, c are replaced by a+x, b+x, c+x respectively, with
x ∈ C) and under dilations-rotations (when a, b, c are replaced by αa, αb, αc respectively, with α ∈ C \ {0}).
The property “the triangle △abc is equilateral” is also invariant under shifts and dilations-rotations; so, after
an appropriate shift and dilation-rotation, we may assume that a = 0 and b = 1. In this case (∗) takes the

form c2− c+1 = 0, which means that c = 1
2 ±

√
3

2 ; but this is equivalent to saying that the triangle △(0, 1, c)
is equilateral.
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5. Prove that

∫ 2011

−2011

dx

1 + x2011 +
√

1 + x4022
= 2011.

Solution. 2011 is irrelevant here as well... Let us show that for any a > 0 and any continuous (or just
integrable) odd function f on [−a, a],

∫ a

−a

dx

1 + f(x) +
√

1 + f(x)2
= a.

(Notice that
√

1 + f(x)2 > |f(x)|, so 1+f(x)+
√

1 + f(x)2 > 0 for all x.) Indeed, let g(x) = 1

1+f(x)+
√

1+f(x)2
;

then

g(x) + g(−x) = 1

1+f(x)+
√

1+f(x)2
+ 1

1+f(−x)+
√

1+f(−x)2
= 1

1+f(x)+
√

1+f(x)2
+ 1

1−f(x)+
√

1+f(x)2

= 2
1+

√
1+f(x)2

1+1+f(x)2+2
√

1+f(x)2−f(x)2
= 2

1+
√

1+f(x)2

2+2
√

1+f(x)2
= 1.

But
∫ a

−a
g(−x)dx =

∫ a

−a
g(x)dx, so

∫ a

−a

g(x)dx =
1

2

(

∫ a

−a

g(x)dx +

∫ a

−a

g(−x)dx
)

=
1

2

∫ a

−a

(

g(x) + g(−x)
)

dx =
1

2

∫ a

−a

dx = a.

6. Define F : C3 −→ C3 by F (x, y, z) = (x + y + z, xy + yz + zx, xyz). Prove that F is surjective.

Solution. Let (a, b, c) ∈ C3; we need to find x, y, z ∈ C such that F (x, y, z) = (a, b, c). Consider the
polynomial p(w) = w3−aw2+bw−c. By the fundamental theorem of arithemtic, p(w) = (w−x)(w−y)(w−z)
for some x, y, z ∈ C, and by Vieta’s theorem (or simply by opening the parentheses), x + y + z = a,
xy + yz + zx = b, and xyz = c.
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