## Solutions to 2011 Gordon Prize examination problems

1. Let $1 \leq a_{1}, \ldots, a_{1006} \leq 2011$ be distinct positive integers. Prove that there exist $i, j$ such that $a_{i}+a_{j}=$ 2012.

Solution. Of course, there is nothing special in 2011, except that this is the current year A.D.; we will prove that for any $n \in \mathbb{N}$, if $A$ is an $n$-element subset of $\{1, \ldots, 2 n-1\}$ then there are $a, b \in A$ with $a+b=2 n$. Indeed, let $B=2 n-A=\{2 n-a, a \in A\}$. Then $B \subset\{1, \ldots, 2 n-1\}$ and $|B|=|A|=n$, so $A \cap B \neq \emptyset$. Let $a \in A \cap B$; since $a \in B$, we have $b=2 n-a \in A$, and so, $a, b \in A, a+b=2 n$.
2. Let $g(x)=a_{0} x^{r_{0}}+a_{1} x^{r_{1}}+a_{2} x^{r_{2}}+\ldots+a_{2011} x^{r_{2011}}, x>0$, where $a_{0}, \ldots, a_{2011}$ are nonzero real numbers and $r_{0}, \ldots, r_{2011}$ are distinct real numbers. Prove that $g$ has at most 2011 zeroes in $(0, \infty)$.

Solution. Again, 2011 appears here for fun only; we will prove by induction that for any $n \geq 0$, nonzero real numbers $a_{0}, \ldots, a_{n}$ and distinct real numbers $r_{0}, \ldots, r_{n}$ the function $g(x)=a_{0} x^{r_{0}}+a_{1} x^{r_{1}}+a_{2} x^{r_{2}}+\ldots+a_{n} x^{r_{n}}$ has at most $n$ zeroes in $(0, \infty)$. For $n=0$ this statement is trivial. Let $f(x)=x^{-r_{0}} g(x)=a_{0}+a_{1} x^{s_{1}}+$ $a_{2} x^{s_{2}}+\ldots+a_{n} x^{s_{n}}$, where $s_{i}=r_{i}-r_{0}, i=1, \ldots, n$; then $f$ has the same zeroes in $(0, \infty)$ as $g$. We have $f^{\prime}(x)=a_{1} s_{1} x^{s_{1}-1}+a_{2} s_{2} x^{s_{2}-1}+\ldots+a_{n} s_{n} x^{s_{n}-1}$, which, after collecting simular terms, takes the form $f^{\prime}(x)=b_{0} x^{p_{0}}+b_{1} x^{p_{1}}+\ldots+b_{m} x^{p_{m}}$ for some $m<n$, nonzero $b_{i}$ and distinct $p_{i}$. (If $f^{\prime}=0$, then $f$ is constant, and so, has no roots at all ( $f$ cannot be equal to zero identically since $a_{i}$ are nonzero); thus, we may assume that the expression for $f^{\prime}$ is nontrivial.) By (complete) induction, $f^{\prime}$ has at most $m$ zeroes. But then $f$ has at most $m+1 \leq n$ zeroes, since, by Rolle's theorem, between any two roots of $f$ there is a root of $f^{\prime}$.
3. Prove that the "Pascal matrix" $P_{n}=\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & 2 & 3 & \ldots & n \\ 1 & 3 & 6 & \ldots & \binom{n+1}{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & n & \binom{n+1}{2} & \ldots & \binom{2 n-2}{n-1}\end{array}\right)$ has determinant 1 .
 one and excepting the first one, the preceding row; then the $(i, j)$ th element, with $i \geq 2$, of the obtained matrix $P_{n}^{\prime}$ is $\binom{i+j-2}{j-1}-\binom{i+j-3}{j-1}=\binom{i+j-3}{j-2}$ (we use the identity $\left.\binom{m}{k}=\binom{m-1}{k}+\binom{m-1}{k-1}\right)$ :

$$
P_{n}^{\prime}=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
0 & 1 & 2 & \ldots & n-1 \\
0 & 1 & 3 & \ldots & \binom{n}{n-2} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 1 & n & \ldots & \binom{2 n-3}{n-2}
\end{array}\right)
$$

Now subtract from each column of $P_{n}^{\prime}$ starting from the last one and excepting the first one, the preceding column; then the $(i, j)$ th element, with $i, j \geq 2$, of the obtained matrix $P_{n}^{\prime \prime}$ is $\binom{i+j-3}{j-2}-\binom{i+j-4}{j-3}=\binom{i+j-4}{j-2}$ :

$$
P_{n}^{\prime \prime}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 1 & \ldots & 1 \\
0 & 1 & 2 & \ldots & n-1 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 1 & n-1 & \ldots & \binom{2 n-4}{n-2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & P_{n-1}
\end{array}\right)
$$

where $P_{n-1}$ the the "Pascal matrix" of size $(n-1) \times(n-1)$. By induction on $n$, $\operatorname{det} P_{n-1}=1$, and so, $\operatorname{det} P_{n}^{\prime \prime}=1$. Since the row-column operations do not affect the determinant of a matrix, we obtain that
$\operatorname{det} P_{n}=\operatorname{det} P_{n}^{\prime \prime}=1$.
Another solution. We claim that $P_{n}=L_{n} U_{n}$, where

$$
L_{n}=\left(\begin{array}{ccccc}
\binom{0}{0} & 0 & 0 & \ldots & 0 \\
\binom{1}{0} & \binom{1}{1} & 0 & \ldots & 0 \\
\binom{2}{0} & \binom{2}{1} & \binom{2}{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\binom{n-1}{0} & \binom{n-1}{1} & \binom{n-1}{2} & \ldots & \binom{n-1}{n-1}
\end{array}\right) \text { and } U_{n}=\left(\begin{array}{ccccc}
\binom{0}{0} & \binom{1}{0} & \binom{2}{0} & \ldots & \binom{n-1}{0} \\
0 & \binom{1}{1} & \binom{2}{1} & \cdots & \binom{n-1}{1} \\
0 & 0 & \binom{2}{2} & \cdots & \binom{n-1}{2} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & \binom{n-1}{n-1}
\end{array}\right)=L_{n}^{t} ;
$$

since $\operatorname{det} L_{n}=\operatorname{det} U_{n}=1$, this implies that $\operatorname{det} P_{n}=1$.
Indeed, if we assume that $\binom{i}{k}=0$ for $k>i$, then the $(i, j)$-th entry of $L_{n}$ is $\binom{i-1}{j-1}$ and the $(i, j)$-th entry of $U_{n}$ is $\binom{j-1}{i-1}, i=1, \ldots, n, j=1, \ldots, n$. Hence, the $(i, j)$-th entry of $L_{n} U_{n}$ is equal to $\sum_{k=1}^{n}\binom{i-1}{k-1}\binom{j-1}{k-1}$, which is (well known to be) equal to $\binom{i+j-2}{j-1}$, the $(i, j)$-th entry of $P_{n}$.
4. Let $a, b, c$ be distinct complex numbers. Prove that the triangle $\triangle a b c$ is equilateral iff

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}=a b+b c+c a \tag{*}
\end{equation*}
$$

$\underline{\text { Solution. The triangle } \triangle a b c \text { is equilateral iff its side }}$ $c-a$ is obtained from its side $b-a$ by the rotation by $\pm \pi / 3$, that is, if $c-a=\gamma(b-a)$ where $\gamma=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$ :


We will now show that the equation $(*)$ is also equivalent to $c-a=\gamma(b-a)$. Put $x=b-a$ and $\alpha=(c-a) /(b-a)$, so that $b=a+x$ and $c=a+\alpha x$; then the equation $(*)$ is equivalent to

$$
a^{2}+\left(a^{2}+2 a x+x^{2}\right)+\left(a^{2}+2 a \alpha x+\alpha^{2} x^{2}\right)=\left(a^{2}+a x\right)+\left(a^{2}+a \alpha x+a x+\alpha x^{2}\right)+\left(a^{2}+a \alpha x\right),
$$

which after all the cancelations takes the form

$$
\alpha^{2}-\alpha+1=0
$$

which holds iff $\alpha=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$.
Another solution. The equation $(*)$ is equivalent to

$$
a^{2}+b^{2}+b^{2}+c^{2}+c^{2}+a^{2}=2 a b+2 b c+2 c a
$$

that is, to

$$
(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0
$$

This equation is, clearly, invariant under shifts (when $a, b, c$ are replaced by $a+x, b+x, c+x$ respectively, with $x \in \mathbb{C}$ ) and under dilations-rotations (when $a, b, c$ are replaced by $\alpha a, \alpha b, \alpha c$ respectively, with $\alpha \in \mathbb{C} \backslash\{0\}$ ). The property "the triangle $\triangle a b c$ is equilateral" is also invariant under shifts and dilations-rotations; so, after an appropriate shift and dilation-rotation, we may assume that $a=0$ and $b=1$. In this case $(*)$ takes the form $c^{2}-c+1=0$, which means that $c=\frac{1}{2} \pm \frac{\sqrt{3}}{2}$; but this is equivalent to saying that the triangle $\triangle(0,1, c)$ is equilateral.
5. Prove that $\int_{-2011}^{2011} \frac{d x}{1+x^{2011}+\sqrt{1+x^{4022}}}=2011$.

Solution. 2011 is irrelevant here as well... Let us show that for any $a>0$ and any continuous (or just integrable) odd function $f$ on $[-a, a]$,

$$
\int_{-a}^{a} \frac{d x}{1+f(x)+\sqrt{1+f(x)^{2}}}=a
$$

(Notice that $\sqrt{1+f(x)^{2}}>|f(x)|$, so $1+f(x)+\sqrt{1+f(x)^{2}}>0$ for all $x$.) Indeed, let $g(x)=\frac{1}{1+f(x)+\sqrt{1+f(x)^{2}}}$; then

$$
\begin{aligned}
g(x)+g(-x)=\frac{1}{1+f(x)+\sqrt{1+f(x)^{2}}}+\frac{1}{1+f(-x)+\sqrt{1+f(-x)^{2}}} & =\frac{1}{1+f(x)+\sqrt{1+f(x)^{2}}}+\frac{1}{1-f(x)+\sqrt{1+f(x)^{2}}} \\
& =2 \frac{1+\sqrt{1+f(x)^{2}}}{1+1+f(x)^{2}+2 \sqrt{1+f(x)^{2}}-f(x)^{2}}=2 \frac{1+\sqrt{1+f(x)^{2}}}{2+2 \sqrt{1+f(x)^{2}}}=1 .
\end{aligned}
$$

But $\int_{-a}^{a} g(-x) d x=\int_{-a}^{a} g(x) d x$, so

$$
\int_{-a}^{a} g(x) d x=\frac{1}{2}\left(\int_{-a}^{a} g(x) d x+\int_{-a}^{a} g(-x) d x\right)=\frac{1}{2} \int_{-a}^{a}(g(x)+g(-x)) d x=\frac{1}{2} \int_{-a}^{a} d x=a .
$$

6. Define $F: \mathbb{C}^{3} \longrightarrow \mathbb{C}^{3}$ by $F(x, y, z)=(x+y+z, x y+y z+z x, x y z)$. Prove that $F$ is surjective.
$\underline{\text { Solution. Let }}(a, b, c) \in \mathbb{C}^{3}$; we need to find $x, y, z \in \mathbb{C}$ such that $F(x, y, z)=(a, b, c)$. Consider the polynomial $p(w)=w^{3}-a w^{2}+b w-c$. By the fundamental theorem of arithemtic, $p(w)=(w-x)(w-y)(w-z)$ for some $x, y, z \in \mathbb{C}$, and by Vieta's theorem (or simply by opening the parentheses), $x+y+z=a$, $x y+y z+z x=b$, and $x y z=c$.
