Solutions to 2012 Gordon Prize examination problems

1. Let $n \in \mathbb{N}$. Find all complex solutions of the system of equations

$$\begin{cases} x_1 + \dots + x_n = 0 \\ x_1^2 + \dots + x_n^2 = 0 \\ \vdots & \vdots \\ x_1^n + \dots + x_n^n = 0 \end{cases} (*)$$

<u>Solution</u>. This system has only zero solution, $x_1 = x_2 = \ldots = x_n = 0$, which we are going to prove. Let (x_1, \ldots, x_n) be an arbitrary solution of the system (*). Let $p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ be the polynomial whose roots are x_1, \ldots, x_n , that is, $p(x) = (x - x_1) \ldots (x - x_n)$. Adding the identities $x_1^n + a_{n-1}x_1^{n-1} + \ldots + a_1x_1 + a_0 = 0, x_2^n + a_{n-1}x_2^{n-1} + \ldots + a_1x_2 + a_0 = 0, \ldots, x_1^n + a_{n-1}x_n^{n-1} + \ldots + a_1x_n + a_0 = 0$, we obtain

$$(x_1^n + \dots + x_n^n) + a_{n-1}(x_1^{n-1} + \dots + x_n^{n-1}) + \dots + a_1(x_1 + \dots + x_n) + na_0 = 0$$

from which and (*), $na_0 = 0$. But $a_0 = (-1)^n x_1 \dots x_n$, so, one of $x_i = 0$. Assume without loss of generality that $x_n = 0$; then (*) implies

$$\begin{cases} x_1 + \dots + x_{n-1} = 0\\ x_1^2 + \dots + x_{n-1}^2 = 0\\ \vdots\\ x_1^{n-1} + \dots + x_{n-1}^{n-1} = 0, \end{cases}$$

and by induction on n, also $x_1 = \ldots = x_{n-1} = 0$.

2. Which number is greater, $\log(5/4)$ or $\arctan(1/2)$?

<u>Solution</u>. $\log(5/4) < \arctan(1/2)$. Indeed, $\log(5/4) = \int_0^{1/4} \frac{dx}{1+x}$ and $\arctan(1/2) = \int_0^{1/2} \frac{dx}{1+x^2}$; after the substitution $x = u^2$ we have

$$\int_0^{1/4} \frac{dx}{1+x} = \int_0^{1/2} \frac{2u \, du}{1+u^2} < \int_0^{1/2} \frac{du}{1+u^2}$$

(since 2u < 1 on [0, 1/2)).

3. Prove that any closed polygonal (indeed, any rectifiable) curve C of length 1 in the plane is contained in a disk D of radius 1/4.

<u>Solution</u>. Choose two points P_1 and P_2 on C such that the length of both arcs of C connecting these points is 1/2. Then for any point $P \in C$, dist (P_1, P) does not exceed the length of the arc of Cconnecting P_1 and P, and dist (P_2, P) does not exceed the length of the arc of C connecting P and P_2 , so, dist $(P_1, P) + \text{dist}(P_2, P) \leq$ 1/2. Let O be the center of the interval $[P_1, P_2]$; then for any $P \in C$, dist $(O, P) \leq \frac{1}{2} (\text{dist}(P_1, P) + \text{dist}(P_2, P)) \leq 1/4$. (The length of a median of a triangle never exceeds the half-sum of the lengths of the sides of the triangle passing from the same vertex.)

4. Every point of the plane is colored one of two colors, red or blue. Let $R = \{d(P,Q) : both P \text{ and } Q \text{ are red}\}$ and $B = \{d(P,Q) : both P \text{ and } Q \text{ are blue}\}$, where d(P,Q) denotes the distance between points P and Q. Prove that at least one of these sets R, B is equal to $[0,\infty)$.

<u>Solution</u>. Assume that there exist positive numbers $a \notin R$ and $b \notin B$; this means that for any red point P all points in the plane at the distance of a from P are blue, and for any blue point Q all points at the distance of b from Q are red. Assume, without loss of generality, that $b \leq a$. Choose a red point P, and let C_P be the circle of radius a centered at P; then all points of C_P are blue. Let Q be a point of C_P , and let C_Q be the circle of radius b centered at Q; then all points of C_Q are red. But the intersection of C_P and C_Q is nonempty, contradiction.

5. Let A and B be two $n \times n$ matrices such that A + B = AB. Prove that AB = BA.

<u>Solution</u>. We have AB - A - B + I = I, so (A - I)(B - I) = I, so $B - I = (A - I)^{-1}$, so A - I and B - I commute, so A and B commute.

6. Let $z_1, \ldots, z_n \in \mathbb{C}$ and $|z_1| = |z_2| = \ldots = |z_n| = r > 0$. Prove that the number $a = (z_1 + z_2)(z_2 + z_3) \ldots (z_{n-1} + z_n)(z_n + z_1)(z_1 z_2 \ldots z_n)^{-1}$ is real.

Solution. We have

$$\bar{a} = \frac{(\bar{z}_1 + \bar{z}_2)(\bar{z}_2 + \bar{z}_3)\dots(\bar{z}_{n-1} + \bar{z}_n)(\bar{z}_n + \bar{z}_1)}{\bar{z}_1 \bar{z}_2 \dots \bar{z}_n} = \frac{(\frac{r^2}{z_1} + \frac{r^2}{z_2})(\frac{r^2}{z_2} + \frac{r^2}{z_3})\dots(\frac{r^2}{z_{n-1}} + \frac{r^2}{z_n})(\frac{r^2}{z_n} + \frac{r^2}{z_1})}{\frac{r^2}{z_1 z_2} \dots \frac{r^2}{z_n}}$$
$$= \frac{r^{2n}(\frac{1}{z_1} + \frac{1}{z_2})(\frac{1}{z_2} + \frac{1}{z_3})\dots(\frac{1}{z_{n-1}} + \frac{1}{z_n})(\frac{1}{z_n} + \frac{1}{z_1})}{r^{2n}\frac{1}{z_1 z_2} \dots \frac{1}{z_n}} = \frac{(\frac{z_1 + z_2}{z_1 z_2})(\frac{z_2 + z_3}{z_2 z_3})\dots(\frac{z_{n-1} + z_n}{z_{n-1} z_n})(\frac{z_n + z_1}{z_n z_1})}{\frac{1}{z_1 z_2 \dots z_n}}$$
$$= \frac{\frac{(z_1 + z_2)(z_2 + z_3)\dots(z_{n-1} + z_n)(z_n + z_1)}{z_1 z_2 \dots z_n}}{z_1 z_2 \dots z_n} = a,$$

so a is real.