Solutions to 2012 Gordon Prize examination problems

1. Let $n \in \mathbb{N}$. Find all complex solutions of the system of equations

$$
\left\{\begin{array}{l}
x_{1}+\ldots+x_{n}=0 \tag{*}\\
x_{1}^{2}+\ldots+x_{n}^{2}=0 \\
\vdots \\
\vdots \\
x_{1}^{n}+\ldots+x_{n}^{n}=0
\end{array}\right.
$$

$\underline{\text { Solution. This system has only zero solution, } x_{1}=x_{2}=\ldots=x_{n}=0 \text {, which we are going to prove. }}$ Let $\left(x_{1}, \ldots, x_{n}\right)$ be an arbitrary solution of the system $(*)$. Let $p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be the polynomial whose roots are x_{1}, \ldots, x_{n}, that is, $p(x)=\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$. Adding the identities $x_{1}^{n}+a_{n-1} x_{1}^{n-1}+\ldots+a_{1} x_{1}+a_{0}=0, x_{2}^{n}+a_{n-1} x_{2}^{n-1}+\ldots+a_{1} x_{2}+a_{0}=0, \ldots, x_{1}^{n}+a_{n-1} x_{n}^{n-1}+\ldots+a_{1} x_{n}+a_{0}=0$, we obtain

$$
\left(x_{1}^{n}+\ldots+x_{n}^{n}\right)+a_{n-1}\left(x_{1}^{n-1}+\ldots+x_{n}^{n-1}\right)+\ldots+a_{1}\left(x_{1}+\ldots+x_{n}\right)+n a_{0}=0
$$

from which and $(*), n a_{0}=0$. But $a_{0}=(-1)^{n} x_{1} \ldots x_{n}$, so, one of $x_{i}=0$. Assume without loss of generality that $x_{n}=0$; then $(*)$ implies

$$
\left\{\begin{array}{l}
x_{1}+\ldots+x_{n-1}=0 \\
x_{1}^{2}+\ldots+x_{n-1}^{2}=0 \\
\vdots \\
x_{1}^{n-1}+\ldots+x_{n-1}^{n-1}=0
\end{array}\right.
$$

and by induction on n, also $x_{1}=\ldots=x_{n-1}=0$.
2. Which number is greater, $\log (5 / 4)$ or $\arctan (1 / 2)$?

Solution. $\log (5 / 4)<\arctan (1 / 2)$. Indeed, $\log (5 / 4)=\int_{0}^{1 / 4} \frac{d x}{1+x}$ and $\arctan (1 / 2)=\int_{0}^{1 / 2} \frac{d x}{1+x^{2}} ;$ after the substitution $x=u^{2}$ we have

$$
\int_{0}^{1 / 4} \frac{d x}{1+x}=\int_{0}^{1 / 2} \frac{2 u d u}{1+u^{2}}<\int_{0}^{1 / 2} \frac{d u}{1+u^{2}}
$$

(since $2 u<1$ on $[0,1 / 2)$).
3. Prove that any closed polygonal (indeed, any rectifiable) curve C of length 1 in the plane is contained in a disk D of radius $1 / 4$.

Solution. Choose two points P_{1} and P_{2} on C such that the length of both arcs of C connecting these points is $1 / 2$. Then for any point $P \in C, \operatorname{dist}\left(P_{1}, P\right)$ does not exceed the length of the arc of C connecting P_{1} and P, and $\operatorname{dist}\left(P_{2}, P\right)$ does not exceed the length of the arc of C connecting P and P_{2}, so, $\operatorname{dist}\left(P_{1}, P\right)+\operatorname{dist}\left(P_{2}, P\right) \leq$ $1 / 2$. Let O be the center of the interval $\left[P_{1}, P_{2}\right]$; then for any $P \in C, \operatorname{dist}(O, P) \leq \frac{1}{2}\left(\operatorname{dist}\left(P_{1}, P\right)+\operatorname{dist}\left(P_{2}, P\right)\right) \leq 1 / 4$. (The
 length of a median of a triangle never exceeds the half-sum of the lengths of the sides of the triangle passing from the same vertex.)
4. Every point of the plane is colored one of two colors, red or blue. Let $R=\{d(P, Q)$: both P and Q are red $\}$ and $B=\{d(P, Q)$: both P and Q are blue $\}$, where $d(P, Q)$ denotes the distance between points P and Q. Prove that at least one of these sets R, B is equal to $[0, \infty)$.

Solution. Assume that there exist positive numbers $a \notin R$ and $b \notin B$; this means that for any red point P all points in the plane at the distance of a from P are blue, and for any blue point Q all points at the distance of b from Q are red. Assume, without loss of generality, that $b \leq a$. Choose a red point P, and let C_{P} be the circle of radius a centered at P; then all points of C_{P} are blue. Let Q be a point of C_{P}, and let C_{Q} be the circle of radius b centered at Q; then all points of C_{Q} are red. But the intersection
 of C_{P} and C_{Q} is nonempty, contradiction.
5. Let A and B be two $n \times n$ matrices such that $A+B=A B$. Prove that $A B=B A$.

Solution. We have $A B-A-B+I=I$, so $(A-I)(B-I)=I$, so $B-I=(A-I)^{-1}$, so $A-I$ and $B-I$ commute, so A and B commute.
6. Let $z_{1}, \ldots, z_{n} \in \mathbb{C}$ and $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=r>0$. Prove that the number $a=\left(z_{1}+z_{2}\right)\left(z_{2}+z_{3}\right)$ $\ldots\left(z_{n-1}+z_{n}\right)\left(z_{n}+z_{1}\right)\left(z_{1} z_{2} \ldots z_{n}\right)^{-1}$ is real.
Solution. We have

$$
\begin{aligned}
\bar{a} & =\frac{\left(\bar{z}_{1}+\bar{z}_{2}\right)\left(\bar{z}_{2}+\bar{z}_{3}\right) \ldots\left(\bar{z}_{n-1}+\bar{z}_{n}\right)\left(\bar{z}_{n}+\bar{z}_{1}\right)}{\bar{z}_{1} \bar{z}_{2} \ldots \bar{z}_{n}}=\frac{\left(\frac{r^{2}}{z_{1}}+\frac{r^{2}}{z_{2}}\right)\left(\frac{r^{2}}{z_{2}}+\frac{r^{2}}{z_{3}}\right) \ldots\left(\frac{r^{2}}{z_{n-1}}+\frac{r^{2}}{z_{n}}\right)\left(\frac{r^{2}}{z_{n}}+\frac{r^{2}}{z_{1}}\right)}{\frac{r^{2}}{z_{1}} \frac{r^{2}}{z_{2}} \ldots \frac{r^{2}}{z_{n}}} \\
& =\frac{r^{2 n}\left(\frac{1}{z_{1}}+\frac{1}{z_{2}}\right)\left(\frac{1}{z_{2}}+\frac{1}{z_{3}}\right) \ldots\left(\frac{1}{z_{n-1}}+\frac{1}{z_{n}}\right)\left(\frac{1}{z_{n}}+\frac{1}{z_{1}}\right)}{r^{2 n} \frac{1}{z_{1}} \frac{1}{z_{2}} \ldots \frac{1}{z_{n}}}=\frac{\left(\frac{z_{1}+z_{2}}{z_{1} z_{2}}\right)\left(\frac{z_{2}+z_{3}}{z_{2} z_{3}}\right) \ldots\left(\frac{z_{n-1}+z_{n}}{z_{n-1} z_{n}}\right)\left(\frac{z_{n}+z_{1}}{z_{n} z_{1}}\right)}{\frac{1}{z_{1} z_{2} \ldots z_{n}}} \\
& =\frac{\frac{\left(z_{1}+z_{2}\right)\left(z_{2}+z_{3}\right) \ldots\left(z_{n-1}+z_{n}\right)\left(z_{n}+z_{1}\right)}{\left(z_{1} z_{2} \ldots z_{n}\right)^{2}}}{\frac{1}{z_{1} z_{2} \ldots z_{n}}}=\frac{\left(z_{1}+z_{2}\right)\left(z_{2}+z_{3}\right) \ldots\left(z_{n-1}+z_{n}\right)\left(z_{n}+z_{1}\right)}{z_{1} z_{2} \ldots z_{n}}=a,
\end{aligned}
$$

so a is real.

