
Solutions to 2012 Gordon Prize examination problems

1. Let n ∈ N. Find all complex solutions of the system of equations
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n = 0
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1 + . . . + xn

n = 0

(∗)

Solution. This system has only zero solution, x1 = x2 = . . . = xn = 0, which we are going to prove.
Let (x1, . . . , xn) be an arbitrary solution of the system (∗). Let p(x) = xn + an−1x

n−1 + . . . + a1x + a0

be the polynomial whose roots are x1, . . . , xn, that is, p(x) = (x − x1) . . . (x − xn). Adding the identities
xn

1 +an−1x
n−1
1 +. . .+a1x1+a0 = 0, xn

2 +an−1x
n−1
2 +. . .+a1x2+a0 = 0, . . ., xn

1 +an−1x
n−1
n +. . .+a1xn+a0 = 0,

we obtain

(xn
1 + . . . + xn

n) + an−1(x
n−1
1 + . . . + xn−1

n ) + . . . + a1(x1 + . . . + xn) + na0 = 0,

from which and (∗), na0 = 0. But a0 = (−1)nx1 . . . xn, so, one of xi = 0. Assume without loss of generality
that xn = 0; then (∗) implies
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and by induction on n, also x1 = . . . = xn−1 = 0.

2. Which number is greater, log(5/4) or arctan(1/2)?

Solution. log(5/4) < arctan(1/2). Indeed, log(5/4) =
∫ 1/4

0
dx

1+x and arctan(1/2) =
∫ 1/2

0
dx

1+x2 ; after the

substitution x = u2 we have

∫ 1/4

0

dx

1 + x
=

∫ 1/2

0

2u du

1 + u2
<

∫ 1/2

0

du

1 + u2

(since 2u < 1 on [0, 1/2)).

3. Prove that any closed polygonal (indeed, any rectifiable) curve C of length 1 in the plane is contained in
a disk D of radius 1/4.

Solution. Choose two points P1 and P2 on C such that the length
of both arcs of C connecting these points is 1/2. Then for any
point P ∈ C, dist(P1, P ) does not exceed the length of the arc of C
connecting P1 and P , and dist(P2, P ) does not exceed the length of
the arc of C connecting P and P2, so, dist(P1, P ) + dist(P2, P ) ≤
1/2. Let O be the center of the interval [P1, P2]; then for any
P ∈ C, dist(O,P ) ≤ 1

2

(

dist(P1, P ) + dist(P2, P )
)

≤ 1/4. (The
length of a median of a triangle never exceeds the half-sum of the
lengths of the sides of the triangle passing from the same vertex.)
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4. Every point of the plane is colored one of two colors, red or blue. Let R =
{

d(P,Q) : both P and Q are red
}

and B =
{

d(P,Q) : both P and Q are blue
}

, where d(P,Q) denotes the distance between points P and Q.
Prove that at least one of these sets R, B is equal to [0,∞).

Solution. Assume that there exist positive numbers a 6∈ R and
b 6∈ B; this means that for any red point P all points in the plane
at the distance of a from P are blue, and for any blue point Q
all points at the distance of b from Q are red. Assume, without
loss of generality, that b ≤ a. Choose a red point P , and let CP

be the circle of radius a centered at P ; then all points of CP are
blue. Let Q be a point of CP , and let CQ be the circle of radius b
centered at Q; then all points of CQ are red. But the intersection
of CP and CQ is nonempty, contradiction.
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5. Let A and B be two n × n matrices such that A + B = AB. Prove that AB = BA.

Solution. We have AB − A − B + I = I, so (A − I)(B − I) = I, so B − I = (A − I)−1, so A − I and B − I
commute, so A and B commute.

6. Let z1, . . . , zn ∈ C and |z1| = |z2| = . . . = |zn| = r > 0. Prove that the number a = (z1 + z2)(z2 + z3)
. . . (zn−1 + zn)(zn + z1)(z1z2 . . . zn)−1 is real.

Solution. We have

ā =
(z̄1 + z̄2)(z̄2 + z̄3) . . . (z̄n−1 + z̄n)(z̄n + z̄1)

z̄1z̄2 . . . z̄n
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1
z1z2...zn

=

(z1+z2)(z2+z3)...(zn−1+zn)(zn+z1)
(z1z2...zn)2

1
z1z2...zn

=
(z1 + z2)(z2 + z3) . . . (zn−1 + zn)(zn + z1)

z1z2 . . . zn
= a,

so a is real.
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