2014 Gordon exam solutions

1. Prove that there does not exist a prime integer of the form 1001001...1001.

<u>Solution</u>. The number $1001001 \dots 1001$ having n digits 1 is

$$1 + 1000 + \ldots + 1000^{n-1} = \frac{1000^n - 1}{1000 - 1} = \frac{(10^n - 1)(100^n + 10^n + 1)}{999}$$

This number can be prime only if one of the factors in the numerator is canceled by the denominator, which is only possible if $n \leq 3$. However, the integers 1, 1001, and 1001001 are not prime. (1001 is divisible by 7, and 1001001 is divisible by 3.)

2. Let $n \in \mathbb{N}$ and suppose that S is an (n + 1)-element subset of the set $\{1, 2, \dots, 2n\}$. Prove that there are $a, b \in S$ (not necessarily distinct) such that the sum a + b is also in S.

<u>Solution</u>. Let $S = \{a_1, a_2, \ldots, a_{n+1}\}$, where $a_1 < a_2 < \ldots < a_{n+1}$. Put $b_k = a_k - a_1$, $k = 2, \ldots, n+1$, then $1 \leq b_2 < b_3 < \ldots < b_{n+1} < 2n$. The set S has cardinality n+1 and the set $P = \{b_2, \ldots, b_{n+1}\}$ has cardinality n, thus they cannot be disjoint, and there exist i, j such that $a_i - a_1 = b_i = a_j$, that is, $a_1 + a_j = a_i \in S$.

3. Let $p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ be a polynomial with complex coefficients satisfying $|a_i| \leq 2014$, $i = 0, \ldots, n-1$. If $z \in \mathbb{C}$ satisfies p(z) = 0, prove that |z| < 2015.

<u>Solution</u>. Let p(z) = 0, and let $|z| \neq 1$. Then

$$|z^{n}| = \left|a_{n-1}z^{n-1} + \ldots + a_{1}z + a_{0}\right| \le 2014\left(|z^{n-1}| + \ldots + |z| + 1\right) = 2014\frac{|z|^{n} - 1}{|z| - 1}.$$

If $|z| \ge 2015$, this implies that $|z|^n \le |z|^n - 1$, contradiction.

4. The straight lines on the picture are tangent to the circles. Prove that |AB| = |CD|.

<u>Solution</u>. We have |AB| = |AE| = |EF| - |AF| = |EF| - |AC| = |EF| - |AC| = |EF| - |AB| - |BC|, so $|AB| = \frac{1}{2}(|EF| - |BC|)$. Similarly, $|CD| = \frac{1}{2}(|GH| - |BC|)$. Since |EF| = |GH|, we get the result.

5. Suppose that all eigenvalues of an $n \times n$ matrix A are real and that $tr(A^2) = tr(A^3) = tr(A^4)$. Prove that $tr(A^k) = tr(A)$ for all $k \in \mathbb{N}$.

<u>Solution</u>. Let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ be the eigenvalues of A, counting with multiplicity. Then for any k, tr $A^k = \sum_{i=1}^n \lambda_i^k$. Since $\operatorname{tr}(A^2) = \operatorname{tr}(A^3) = \operatorname{tr}(A^4)$, we have $\operatorname{tr}(A^2) - 2\operatorname{tr}(A^3) + \operatorname{tr}(A^4) = 0$, so

$$0 = \sum_{i=1}^{n} \lambda_i^2 - 2\sum_{i=1}^{n} \lambda_i^3 + \sum_{i=1}^{n} \lambda_i^4 = \sum_{i=1}^{n} (\lambda_i^2 - 2\lambda_i^3 + \lambda_i^4) = \sum_{i=1}^{n} \lambda_i^2 (1 - \lambda_i)^2,$$

which implies that for each $i, \lambda_i \in \{0, 1\}$. Thus, for any $k, \sum_{i=1}^n \lambda_i^k = \sum_{i=1}^n \lambda_i = \operatorname{tr} A$.

6. Prove that
$$\int_0^{\pi/2} \log(\sin x) \, dx = -\frac{\pi}{2} \log 2$$

Solution.

$$\begin{split} \int_{0}^{\pi/2} \log(\sin x) \, dx &= \int_{0}^{\pi/2} \log\left(2\sin(x/2)\cos(x/2)\right) \, dx \\ &= \int_{0}^{\pi/2} \left(\log 2 + \log(\sin(x/2)) + \log(\cos(x/2))\right) \, dx \\ &= \frac{\pi}{2} \log 2 + \int_{0}^{\pi/2} \log(\sin(x/2)) \, dx + \int_{0}^{\pi/2} \log(\cos(x/2)) \, dx \\ (y=x/2) &= \frac{\pi}{2} \log 2 + 2 \int_{0}^{\pi/4} \log(\sin y) \, dy + 2 \int_{0}^{\pi/4} \log(\cos y) \, dy \\ &= \frac{\pi}{2} \log 2 + 2 \int_{0}^{\pi/4} \log(\sin y) \, dy + 2 \int_{0}^{\pi/4} \log(\sin(\pi/2 - y)) \, dy \\ &= \frac{\pi}{2} \log 2 + 2 \int_{0}^{\pi/4} \log(\sin y) \, dy + 2 \int_{\pi/4}^{\pi/2} \log(\sin y) \, dy \\ &= \frac{\pi}{2} \log 2 + 2 \int_{0}^{\pi/4} \log(\sin y) \, dy + 2 \int_{\pi/4}^{\pi/2} \log(\sin y) \, dy \\ &= \frac{\pi}{2} \log 2 + 2 \int_{0}^{\pi/2} \log(\sin y) \, dy + 2 \int_{\pi/4}^{\pi/2} \log(\sin y) \, dy \end{split}$$

So, $\int_0^{\pi/2} \log(\sin x) \, dx = -\frac{\pi}{2} \log 2.$