## 2014 Gordon exam solutions

1. Prove that there does not exist a prime integer of the form 1001001... 1001 .

Solution. The number 1001001... 1001 having $n$ digits 1 is

$$
1+1000+\ldots+1000^{n-1}=\frac{1000^{n}-1}{1000-1}=\frac{\left(10^{n}-1\right)\left(100^{n}+10^{n}+1\right)}{999}
$$

This number can be prime only if one of the factors in the numerator is canceled by the denominator, which is only possible if $n \leq 3$. However, the integers 1, 1001, and 1001001 are not prime. (1001 is divisible by 7 , and 1001001 is divisible by 3.)
2. Let $n \in \mathbb{N}$ and suppose that $S$ is an $(n+1)$-element subset of the set $\{1,2, \ldots, 2 n\}$. Prove that there are $a, b \in S$ (not necessarily distinct) such that the sum $a+b$ is also in $S$.
 $k=2, \ldots, n+1$, then $1 \leq b_{2}<b_{3}<\ldots<b_{n+1}<2 n$. The set $S$ has cardinality $n+1$ and the set $P=\left\{b_{2}, \ldots, b_{n+1}\right\}$ has cardinality $n$, thus they cannot be disjoint, and there exist $i, j$ such that $a_{i}-a_{1}=b_{i}=a_{j}$, that is, $a_{1}+a_{j}=a_{i} \in S$.
3. Let $p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial with complex coefficients satisfying $\left|a_{i}\right| \leq 2014, i=0, \ldots, n-1$. If $z \in \mathbb{C}$ satisfies $p(z)=0$, prove that $|z|<2015$.

Solution. Let $p(z)=0$, and let $|z| \neq 1$. Then

$$
\left|z^{n}\right|=\left|a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}\right| \leq 2014\left(\left|z^{n-1}\right|+\ldots+|z|+1\right)=2014 \frac{|z|^{n}-1}{|z|-1}
$$

If $|z| \geq 2015$, this implies that $|z|^{n} \leq|z|^{n}-1$, contradiction.
4. The straight lines on the picture are tangent to the circles. Prove that $|A B|=|C D|$.
$\underline{\text { Solution. We have }|A B|=|A E|=|E F|-|A F|=}$ $|E F|-|A C|=|E F|-|A B|-|B C|$, so $|A B|=$ $\frac{1}{2}(|E F|-|B C|)$. Similarly, $|C D|=\frac{1}{2}(|G H|-|B C|)$.
 Since $|E F|=|G H|$, we get the result.
5. Suppose that all eigenvalues of an $n \times n$ matrix $A$ are real and that $\operatorname{tr}\left(A^{2}\right)=\operatorname{tr}\left(A^{3}\right)=$ $\operatorname{tr}\left(A^{4}\right)$. Prove that $\operatorname{tr}\left(A^{k}\right)=\operatorname{tr}(A)$ for all $k \in \mathbb{N}$.
Solution. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ be the eigenvalues of $A$, counting with multiplicity. Then for any $k, \operatorname{tr} A^{k}=\sum_{i=1}^{n} \lambda_{i}^{k}$. Since $\operatorname{tr}\left(A^{2}\right)=\operatorname{tr}\left(A^{3}\right)=\operatorname{tr}\left(A^{4}\right)$, we have $\operatorname{tr}\left(A^{2}\right)-2 \operatorname{tr}\left(A^{3}\right)+$ $\operatorname{tr}\left(A^{4}\right)=0$, so

$$
0=\sum_{i=1}^{n} \lambda_{i}^{2}-2 \sum_{i=1}^{n} \lambda_{i}^{3}+\sum_{i=1}^{n} \lambda_{i}^{4}=\sum_{i=1}^{n}\left(\lambda_{i}^{2}-2 \lambda_{i}^{3}+\lambda_{i}^{4}\right)=\sum_{i=1}^{n} \lambda_{i}^{2}\left(1-\lambda_{i}\right)^{2},
$$

which implies that for each $i, \lambda_{i} \in\{0,1\}$. Thus, for any $k, \sum_{i=1}^{n} \lambda_{i}^{k}=\sum_{i=1}^{n} \lambda_{i}=\operatorname{tr} A$.
6. Prove that $\int_{0}^{\pi / 2} \log (\sin x) d x=-\frac{\pi}{2} \log 2$.

## Solution.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \log (\sin x) d x & =\int_{0}^{\pi / 2} \log (2 \sin (x / 2) \cos (x / 2)) d x \\
& =\int_{0}^{\pi / 2}(\log 2+\log (\sin (x / 2))+\log (\cos (x / 2))) d x \\
& =\frac{\pi}{2} \log 2+\int_{0}^{\pi / 2} \log (\sin (x / 2)) d x+\int_{0}^{\pi / 2} \log (\cos (x / 2)) d x \\
(y=x / 2) & =\frac{\pi}{2} \log 2+2 \int_{0}^{\pi / 4} \log (\sin y) d y+2 \int_{0}^{\pi / 4} \log (\cos y) d y \\
& =\frac{\pi}{2} \log 2+2 \int_{0}^{\pi / 4} \log (\sin y) d y+2 \int_{0}^{\pi / 4} \log (\sin (\pi / 2-y)) d y \\
& =\frac{\pi}{2} \log 2+2 \int_{0}^{\pi / 4} \log (\sin y) d y+2 \int_{\pi / 4}^{\pi / 2} \log (\sin y) d y \\
& =\frac{\pi}{2} \log 2+2 \int_{0}^{\pi / 2} \log (\sin y) d y
\end{aligned}
$$

So, $\int_{0}^{\pi / 2} \log (\sin x) d x=-\frac{\pi}{2} \log 2$.

