
2016 Gordon exam solutions

1. Find all real x satisfying the equation

√
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√
x−3
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√
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Solution. For a > b > 0, consider the function f(x) =
√
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b

−
√
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a

, x > a. We have
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b

− x−b
a
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√
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,

so f(x) = 0 for x = a+ b, f(x) > 0 for x > a+ b, and f(x) < 0 for x < a+ b. Since 2018 + 2 = 2017 + 3 =
2016 + 4 = 2020, it follows that the difference
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is positive for x > 2020, negative for x < 2020, and is equal to zero for x = 2020 only.

2. Suppose z1, . . . , zk are complex numbers of absolute value 1; for each n = 1, 2, . . . put wn = zn1 + · · ·+ znk .

If the sequence (wn) converges, prove that z1 = · · · = zk = 1.

Solution 1. For any ε > 0 there are infinitely many n such that |zni − 1| < ε for all i = 1, . . . , k, so
|wn − k| < kε for such n. (This is a classical fact, but here is the proof: the sequence vn = (zn1 , . . . , z

n
k ) runs

over the “torus” S =
{
(u1, . . . , uk) ∈ C

k : |u1| = · · · = |uk| = 1
}
. Since S is compact, given ε > 0, there is

an increasing sequence of indices m1 < m2 < · · · such that |vmj
− vm1

| < ε for all j ∈ N. But

|vmj
− vm1

| ≥ |z
mj

i − zm1

i | = |zm1

i | · |z
mj−m1

i − 1| = |z
mj−m1

i − 1|

for all i = 1, . . . , k, so |z
mj−m1

i − 1| < ε, i = 1, . . . , k, for all j.)
This implies that if the sequence (wn) converges, then its limit must be equal to k. However if zi 6= 1

for some i, we have Re zni < 0 for infinitely many n, and then Rewn < k − 1 for such n.

Solution 2. By induction on k, we’ll prove a more general statement: if z1, . . . , zk are distinct complex
numbers of absolute value 1, λ1, . . . , λk are nonzero complex numbers, and the sequence wn = λ1z

n
1 + · · ·+

λkz
n
k , n ∈ N, converges, then k = 1 and z1 = 1. The case k = 1 is clear; assume that k ≥ 2. If one of zi

equals 1, we can exclude it; so, let’s assume that zi 6= 1 for all i. The sequence

wn+1 − wn = (z1 − 1)λ1z
n
1 + · · ·+ (zk − 1)λ1z

n
k , n ∈ N

converges to 0, thus the sequence

(z1 − 1)λ1 + (z2 − 2)λ2(z2z
−1
1 )n + · · ·+ (zk − 1)λ1(zkz

−1
1 )n, n ∈ N

also converges to 0, thus the sequence

(z2 − 1)λ2(z2z
−1
1 )n + · · ·+ (zk − 1)λ1(zkz

−1
1 )n, n ∈ N

converges. By induction, k − 1 = 1 and z2z
−1
1 = 1, so z2 = z1, contradiction.
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3. In an invertible n× n matrix, what is the maximal number of entries that can be equal to 1?

Solution. The answer is n2 − n + 1. First of all, if a matrix has ≥ n2 − n + 2 entries equal to 1, then all
entries in some two rows of the matrix are all equal to 1 and the matrix is degenerate. An example of an

invertible matrix with n2−n+1 entries equal to 1 is

[1 1 1 ... 1
1 0 1 ... 1
1 1 0 ... 1...
...
...

...
1 1 1 ... 0

]

. Indeed, after subtracting the first row from

all other rows we obtain the matrix





1 1 1 ... 1
0 −1 0 ... 0
0 0 −1 ... 0...
...

...
...

0 0 0 ... −1



, which is clearly nondegenerate.

4. Suppose p is a polynomial with integer coefficients having at least 3 distinct integer roots. Prove that the

equation p(x) = 1 has no integer solutions.

Solution. If p is a polynomial with integer coefficients, then for any integer a, b one has (b−a)
∣
∣ (p(b)−p(a)).

(Indeed, (b − a)
∣
∣ (bn − an) for any n.) Assume that p(b) = 1 for some b ∈ Z and let a ∈ Z be a root of p.

Then (b− a)
∣
∣ (p(b)− p(a)) = 1, so a = b± 1; hence, p may have at most two integer roots.

5. An L-tetromino is an L-shape made of four unit squares: . Suppose that an m× n chessboard is tiled

by k L-tetrominos; prove that k is even.

Solution. The total number of squares on the board is m × n = 4k, so at least one of the integers m, n is

even. Assume w.l.o.g. that m is even. Color the columns of the board alternatingly black-white: ...
︸ ︷︷ ︸

m

Now every tetromino covers either three black squares and one white square: or , or one black

square and three white squares: or . Since the number of the black squares on the board equals the
number of the white squares, there must be equal numbers of the “three-black-one-white” tetrominos and
of the “one-black-three-white” tetrominos, and so, the total number of tetrominos is even.

6. For a quadratic polynomial p define the quadratic polynomials T1p and T2p as follows:

T1p(x) = x2p
(
1 + 1

x

)
and T2p(x) = (x− 1)2p

(
1

x−1

)
.

Applying the operations T1 and T2 in some order, is it possible to transform x2 + 1 to x2 + 2017x+ 1?

Solution 1. Notice that T2 is the inverse of T1: T2T1p(x) = p(x) for any quadratic polynomials p. Thus the
composition of any finite sequence of the transformations T1 and T2 equals Tn

1 for some n ∈ Z. For any p,
T1p(x) = x2p

(
x+1
x

)
, T 2

1 p(x) = (x+ 1)2p
(
2x+1
x+1

)
, T 3

1 p(x) = (2x+ 1)2p
(
3x+2
2x+1

)
, etc., and by induction, for any

n ∈ N,

Tn
1 p(x) = (Fnx+ Fn−1)

2p
(Fn+1x+ Fn

Fnx+ Fn−1

)

,

where F0 = 0, F1 = 1, F2 = 1, F3 = 2, . . . is the Fibonacci sequence. The formula also works for n ≤ 0 if we
define Fn = Fn+2 − Fn−1, so that F−1 = 1, F−2 = −1, F−3 = 2, . . ., and Fn = (−1)nF−n for any n. Thus
for p(x) = x2 + 1 and any n ∈ Z we have

Tn
1 p(x) = (Fn+1x+ Fn)

2 + (Fnx+ Fn−1)
2 = (F 2

n+1 + F 2
n)x

2 + 2(Fn+1 + Fn−1)Fnx+ (F 2
n + F 2

n−1),

and we never obtain x2 + 2017x+ 1.

Solution 2. We claim that both T1 and T2 preserve the discriminant of the polynomial they are applied to;
thus, since the polynomials x2+1 and x2+2017x+1 have different discriminants, they cannot be transformed
to each other. The claim can be checked by a direct computation, but the following approach works better.
Let R and S be the operations on quadratic polynomials defined by Rp(x) = x2p

(
1
x

)
and Sp(x) = p(x+ 1);
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then T1 = RS and T2 = S−1R. (Since R−1 = R, this implies by the way that T2 = T−1
1 .) Clearly, R and S

preserve the discriminant, so T1 and T2 also do.

Solution 3. For an arbitrary quadratic polynomial p(x) = ax2 + bx+ c we have

T1p(x) = x2p
(
1+ 1

x

)
= x2

(
a
(
1+ 1

x

)2
+b

(
1+ 1

x

)
+c

)
= ax2+2ax+a+bx2+b+c = (a+b+c)x2+(b+2a)x+c,

and

T2p(x) = (x−1)2p
(

1
x−1

)
= (x−1)2

(
a
(

1
x−1

)2
+b

(
1

x−1

)
+c

)
= a+bx−b+cx2−2cx+c = cx2+(b−2c)x+(a−b+c).

We see that both T1 and T2 preserve the parity of the coefficient of x in the polynomial. Since the polynomials
x2+1 = x2+0x+1 and x2+2017x+1 have different parities of the coefficient of x, they cannot be transformed
to each other.

Solution 4. We see from the formulas produced for T1 and T2 in Solution 3 that T1(x
2 +1) = 3x2 +2x+1,

and T2(x
2 + 1) = x2 − 2x+ 2. We will now prove by induction the following two claims:

Claim 1. For all n ≥ 1, the leading coefficient of Tn
1 (x

2+1) is larger than 1, the coefficient of x is positive,

and the constant coefficient is 1.

Proof. We proceed by induction. We see that the desired result holds for the base case of n = 1. Let us
assume that the assertion holds for some n ∈ N, that is Tn

1 (x
2 + 1) = ax2 + bx+ 1 where a > 1 and b > 0.

Then for n+ 1 we have

Tn+1
1 (x2+1) = T1

(
Tn
1 (x

2+1)
)
= T1(ax

2+bx+c) = (a+b+c)x2+(b+2a)x+c = (a+b+1)x2+(b+2a)x+1,

with a+ b+ 1 > 1, b+ 2a > 0, which implies the induction step.

Claim 2. For all n ≥ 1, the leading coefficient of Tn
2 (x

2 + 1) is at least 1, the coefficient of x is negative,

and the constant coefficient is at least 1.

Proof. We proceed by induction. We see that the desired result holds for the base case of n = 1. Assume
that the assertion holds for some n ∈ N, that is, Tn

2 (x
2 + 1) = ax2 + bx+ c where a ≥ 1, b < 0, and c ≥ 1.

Then
Tn+1
2 (x2 + 1) = T2

(
Tn
2 (x

2 + 1)
)
= T2(ax

2 + bx+ c) = cx2 + (b− 2c)x+ (a− b+ c),

with c ≥ 1, b− 2c < 0, and a− b+ c ≥ 1, which gives the induction step.

Returning to the main problem at hand, we see that Tn
1 (x

2+1) 6= x2+2017x+1 for any n ≥ 1 since the
leading coefficient of the left hand side will always be larger than 1. Similarly, Tn

2 (x
2+1) 6= x2+2017x+1 for

any n ≥ 1 since the coefficient of x on the left hand side will always be negative. And since the composition
of any finite sequence of transformations T1 and T2, if nonidentical, equals either T

n
1 or Tn

2 for some n ∈ N

(see Solution 1), we are done.

Solution 5. If a quadratic polynomial p has a real root x0 6= 0, then both T1p and T2p also have real roots,
namely, 1

x0−1 and 1
x0

+1 respectively. Now, the polynomial x2+2017x+1 has a positive discriminant, hence

two real roots, and x2 + 1 has no real roots, thus they cannot be transformed to each other.
(In this solution we implicitely used the fact that T2 = T−1

1 . If we prefer to avoid this, we should show
that, conversely, if T1p or T2p have a real root, then p also does.)

Solution 6. We see from the formulas derived for T1 and T2 in Solution 3 that T1 and T2 act as linear
transformations on the 3-dimensional R-vector space of quadratic polynomials with real coefficients, whose
matrices in the basis {1, x, x2} are

A1 =
[
1 1 1
2 1 0
1 0 0

]

and A2 =
[
0 0 1
0 1 −2
1 −1 1

]

respectively.

We now see that A1A2 = I, so A2 = A−1
1 (and so T2 = T−1

1 ). It follows that any sequence of applications of
A1 and A2 to some initial vector v0 reduces to An

1 v0 for some n ∈ Z. Our goal is therefore to check whether
there is an n ∈ Z such that

An
1

[
1
0
1

]

=
[

1
2017
1

]

. (∗)
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The characteristic polynomial of A1 is x3− 2x2− 2x+1, which factors to (x+1)
(
x− 3−

√

5
2

)(
x− 3+

√

5
2

)
.

So, the matrix A1 has three distinct eigenvalues, −1, 3−
√

5
2 and 3+

√

5
2 , and hence, is diagonalizable. We then

proceed to diagonalize the matrix to obtain

[
1 1 1
2 1 0
1 0 0

]

=

[
−1 1

2
(3−

√

5) 1

2
(3+

√

5)

1 1−
√

5 1+
√

5
1 1 1

][
−1 0 0

0 1

2
(3−

√

5) 0

0 0 1

2
(3+

√

5)

][
−

2

5

1

5

2

5

1

5

1

10
(−1−

√

5) 1

10
(3+

√

5)
1

5

1

10
(−1+

√

5) 1

10
(3−

√

5)

]

.

Thus equation (∗) reduces to

[
−1 1

2
(3−

√

5) 1

2
(3+

√

5)

1 1−
√

5 1+
√

5
1 1 1

][(−1)n 0 0

0 ( 1

2
(3−

√

5))n 0

0 0 ( 1

2
(3+

√

5))n

][
−

2

5

1

5

2

5

1

5

1

10
(−1−

√

5) 1

10
(3+

√

5)
1

5

1

10
(−1+

√

5) 1

10
(3−

√

5)

]
[
1
0
1

]

=
[

1
2017
1

]

,

which, in turn, is equivalent to

[
(−1)n 0 0

0 ( 1

2
(3−

√

5))n 0

0 0 ( 1

2
(3+

√

5))n

][ 0
1

10
(5+

√

5)
1

10
(5−

√

5)

]

=
[

2017

5

x
y

]

for some real x and y, which we don’t compute since it is already clear that this equation is not solvable for
any integer n.

Remark. While this solution of the problem looks unreasonably long and computational, it however illus-
trates a general approach that applies to many similar problems.

4


