1. Prove that for all $n \in \mathbb{N}, \quad 2 n \sqrt[2 n]{\frac{n!}{(3 n)!}}<\log 3$.

Solution. By the (generalized) arithmetic-geometric means inequality,

$$
\begin{aligned}
2 n \sqrt[2 n]{\frac{n!}{(3 n)!}}=2 n \sqrt[2 n]{\frac{1}{(n+1)(n+2) \cdots(3 n)}}<2 n \cdot \frac{1}{2 n}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\right. & \left.\frac{1}{3 n}\right) \\
& =\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{3 n}
\end{aligned}
$$

The sum

$$
S=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{3 n}=\frac{1}{n}\left(\frac{1}{1+1 / n}+\frac{1}{1+2 / n}+\cdots+\frac{1}{1+2 n / n}\right)
$$

is a lower Riemann sum of the function $\frac{1}{1+x}$ on the interval $[0,2]$, so

$$
S \leq \int_{0}^{2} \frac{1}{1+x} d x=\log 3-\log 1=\log 3
$$

2. Determine whether the integer part of $(1+\sqrt{2})^{2018}$ is even or odd.

Solution. For any $n \in \mathbb{N}$,

$$
a_{n}=(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}=\sum_{i=0}^{n}\binom{n}{i} \sqrt{2}^{i}+\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \sqrt{2}^{i}=2 \sum_{j=0}^{n / 2}\binom{n}{2 j} 2^{i},
$$

which is an even integer. Since $1<\sqrt{2}<2$, we have $0<(1-\sqrt{2})^{n}<1$ if n is even and $-1<(1-\sqrt{2})^{n}<0$ if n is odd. So, the integer part of $(1+\sqrt{2})^{n}=a_{n}-(1-\sqrt{2})^{n}$ is odd if n is even, and is even if n is odd. In particular, the integer part of $(1+\sqrt{2})^{2018}$ is odd.
3. Let $P=A_{1} A_{2} \ldots A_{n}$ be a regular n-gon with center O, and let $R=\operatorname{dist}\left(O, A_{1}\right)$. Prove that for any point X in the plane, $\sum_{k=1}^{n} \operatorname{dist}\left(X, A_{k}\right)^{2}=n\left(R^{2}+d^{2}\right)$, where $d=\operatorname{dist}(X, O)$.
Solution. Let's identify the plane containing P with the complex plane \mathbb{C} so that $O=0$ and $A_{k+1}=R \omega^{k}$, $k=0, \ldots, n-1$, where $\omega=e^{2 \pi i / k}$. Then

$$
\begin{aligned}
\sum_{k=0}^{n-1} \operatorname{dist}\left(X, A_{k+1}\right)^{2}=\sum_{k=0}^{n-1}\left|X-R \omega^{k}\right|^{2}= & \sum_{k=0}^{n-1}\left(X-R \omega^{k}\right)\left(\bar{x}-R \bar{\omega}^{k}\right) \\
& =\sum_{k=0}^{n-1}|X|^{2}-\bar{x} R \sum_{k=0}^{n-1} \omega^{k}-X R \sum_{k=0}^{n-1} \bar{\omega}^{k}+\sum_{k=0}^{1} R^{2}|\omega|^{k}=n\left(|X|^{2}+R^{2}\right)
\end{aligned}
$$

(It is well known that $\sum_{k=0}^{n-1} \omega^{k}=\left(1-\omega^{n}\right) /(1-\omega)=0$.)
4. Suppose an ellipse E in the plane \mathbb{R}^{2} has no points of the lattice \mathbb{Z}^{2} in its interior. Prove that there are at most 4 points of \mathbb{Z}^{2} on the boundary of E.
Solution. Assume that there are ≥ 5 points of \mathbb{Z}^{2} on the boundary of E. Then two of these points, $a=\left(n_{1}, n_{2}\right)$ and $b=\left(m_{1}, m_{2}\right)$, have the same parities of coordinates, so that $n_{1}+m_{1}$ and $n_{2}+m_{2}$ are both even. Then the midpoint $c=\frac{1}{2}(a+b)=\frac{1}{2}\left(n_{1}+m_{1}, n_{2}+m_{2}\right)$ of the interval (a, b) is a point of \mathbb{Z}^{2}, and since E is (strictly) convex, c is contained in the interior of E.
5. Let T be a linear transformation of the vector space M_{n} of $n \times n$ (real) matrices such that $\operatorname{det} T(A)=\operatorname{det} A$ for all $A \in M_{n}$. Prove that T is invertible.
Solution. In the way of contradiction, assume that $A \in \operatorname{ker} T$ and $A \neq 0$. Then for any $B \in M_{n}$,

$$
\operatorname{det}(B+A)=\operatorname{det}(T(B+A))=\operatorname{det}(T(B)+T(A))=\operatorname{det}(T(A))=\operatorname{det}(A)
$$

The problem is solved once we prove the following:
Lemma. For any nonzero $A \in M_{n}$, there exists $B \in M_{n}$ such that $\operatorname{det}(B)=0$ and $\operatorname{det}(B+A) \neq 0$.
Indeed, let $A=\left(u_{1}\left|u_{2}\right| \ldots \mid u_{n}\right)$, where u_{i} are the columns of A, and, assume, without loss of generality, that $u_{1} \neq 0$. Find a basis $\left\{u_{1}, v_{2}, \ldots, v_{n}\right\}$ in \mathbb{R}^{n} (or in F^{n} if our matrices are over a field F) whose first element is u_{1}. Now put $w_{i}=v_{i}-u_{i}, i=2, \ldots, n$, and $B=\left(0\left|w_{2}\right| \ldots \mid w_{n}\right)$; then B is degenerate, but $B+A=\left(u_{1}\left|v_{2}\right| \ldots \mid v_{n}\right)$ is not.
6. Prove that $\sin 1^{\circ}$ is irrational.

Solution. Assume that $\sin 1^{\circ} \in \mathbb{Q}$. Then also $\cos 2^{\circ}=1-2 \sin ^{2} 1^{\circ} \in \mathbb{Q}$, and $\cos 4^{\circ}=2 \cos ^{2} 2^{\circ}-1 \in \mathbb{Q}$, amd by induction, $\cos 8^{\circ}, \cos 16^{\circ}, \cos 32^{\circ} \in \mathbb{Q}$. Now,

$$
\cos 30^{\circ}=\cos 32^{\circ} \cos 2^{\circ}+\sin 32^{\circ} \sin 2^{\circ}
$$

We have that $\cos 32^{\circ} \cos 2^{\circ} \in \mathbb{Q}$, and also

$$
\begin{array}{r}
\sin 32^{\circ} \sin 2^{\circ}=2 \cos 16^{\circ} \sin 16^{\circ} \sin 2^{\circ}=4 \cos 16^{\circ} \cos 8^{\circ} \sin 8^{\circ} \sin 2^{\circ}=8 \cos 16^{\circ} \cos 8^{\circ} \cos 4^{\circ} \sin 4^{\circ} \sin 2^{\circ} \\
=16 \cos 16^{\circ} \cos 8^{\circ} \cos 4^{\circ} \cos 2^{\circ} \sin ^{\circ} 2^{\circ}=8 \cos 16^{\circ} \cos 8^{\circ} \cos 4^{\circ} \cos 2^{\circ}\left(1-\cos 4^{\circ}\right) \in \mathbb{Q}
\end{array}
$$

So, $\cos 30^{\circ} \in \mathbb{Q}$, which is false.
Second solution. If, for some $x, \sin x \in \mathbb{Q}$, then also $\cos 2 x=1-2 \sin ^{2} x \in \mathbb{Q}$, and $\sin 3 x=3 \sin x-4 \sin ^{3} x \in$ \mathbb{Q}, and so $\sin 5 x=2 \sin 3 x \cos 2 x-\sin x \in \mathbb{Q}$. Hence, if one had $\sin 1^{\circ} \in \mathbb{Q}$, then one would also have $\sin 3^{\circ} \in \mathbb{Q}$, so $\sin 9^{\circ} \in \mathbb{Q}$, so $\sin 45^{\circ} \in \mathbb{Q}$, which is not the case.

Third solution. For any $n \in \mathbb{N}, \cos (n x)=T_{n}(\cos x)$, where T_{n} is the nth Chebyshev polynomial of the first kind, which is a polynomial of degree n with integer coefficients. (The existence of these polynomials can be easily established by (complete) induction, using the formulas $\cos (2 n x)=2 \cos ^{2}(n x)-1$ and $\cos ((2 n+1) x)=$ $2 \cos ((n+1) x) \cos (n x)-\cos x$.) If $\sin 1^{\circ} \in \mathbb{Q}$, then $\cos 2^{\circ}=1-2 \sin ^{2} 1^{\circ} \in \mathbb{Q}$, and then $\cos 30^{\circ}=T_{15}\left(\cos 2^{\circ}\right) \in$ \mathbb{Q}, which is not true.

Fourth solution. It also involves Chebyshev's polynomials. If $\sin 1^{\circ}$ is rational, then so is $\cos 89^{\circ}=$ $\cos \left(90^{\circ}-1^{\circ}\right)=\sin 1^{\circ} \in \mathbb{Q}$, and then rational is also $\cos \left(30 \cdot 89^{\circ}\right)=T_{30}\left(\cos 89^{\circ}\right)$. However,

$$
\cos \left(30 \cdot 89^{\circ}\right)=\cos 30\left(90^{\circ}-1^{\circ}\right)=\cos \left(30 \cdot 90^{\circ}-30^{\circ}\right)=\cos \left(7 \cdot 360^{\circ}+180^{\circ}-30^{\circ}\right)=-\cos 30^{\circ}=-\sqrt{3} / 2
$$

is irrational.
Fifth solution. (For those who are familiar with the theory of field extensions.)
Assume that $\sin 1^{\circ} \in \mathbb{Q}$. Then $\cos 1^{\circ}=\sqrt{1-\sin ^{2} 1^{\circ}}$ is contained in an extension L of \mathbb{Q} of degree at most 2. Then by induction, $\sin k^{\circ}=\sin (k-1)^{\circ} \cos 1^{\circ}+\sin 1^{\circ} \cos (k-1)^{\circ}$ and $\cos k^{\circ}=\cos (k-1)^{\circ} \cos 1^{\circ}-$ $\sin 1^{\circ} \sin (k-1)^{\circ}$ are also contained in L for all integer k. However, no extension of \mathbb{Q} of degree 2 contains both $\cos 30^{\circ}=\sqrt{3} / 2$ and $\cos 45^{\circ}=\sqrt{2} / 2$.

