
2018 Gordon exam solutions
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Solution. By the (generalized) arithmetic-geometric means inequality,
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on the interval [0, 2], so
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2. Determine whether the integer part of (1 +
√
2)2018 is even or odd.

Solution. For any n ∈ N,
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which is an even integer. Since 1 <
√
2 < 2, we have 0 < (1−

√
2)n < 1 if n is even and −1 < (1−

√
2)n < 0

if n is odd. So, the integer part of (1 +
√
2)n = an − (1 −

√
2)n is odd if n is even, and is even if n is odd.

In particular, the integer part of (1 +
√
2)2018 is odd.

3. Let P = A1A2 . . . An be a regular n-gon with center O, and let R = dist(O,A1). Prove that for any
point X in the plane,

∑n
k=1

dist(X,Ak)
2 = n(R2 + d2), where d = dist(X,O).

Solution. Let’s identify the plane containing P with the complex plane C so that O = 0 and Ak+1 = Rωk,
k = 0, . . . , n− 1, where ω = e2πi/k. Then
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(It is well known that
∑n−1

k=0
ωk = (1− ωn)/(1− ω) = 0.)

4. Suppose an ellipse E in the plane R2 has no points of the lattice Z2 in its interior. Prove that there are
at most 4 points of Z2 on the boundary of E.

Solution. Assume that there are ≥ 5 points of Z2 on the boundary of E. Then two of these points,
a = (n1, n2) and b = (m1,m2), have the same parities of coordinates, so that n1 +m1 and n2 +m2 are both
even. Then the midpoint c = 1

2
(a+ b) = 1

2
(n1 +m1, n2 +m2) of the interval (a, b) is a point of Z2, and since

E is (strictly) convex, c is contained in the interior of E.
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5. Let T be a linear transformation of the vector space Mn of n×n (real) matrices such that detT (A) = detA
for all A ∈ Mn. Prove that T is invertible.

Solution. In the way of contradiction, assume that A ∈ kerT and A 6= 0. Then for any B ∈ Mn,

det(B +A) = det(T (B +A)) = det(T (B) + T (A)) = det(T (A)) = det(A).

The problem is solved once we prove the following:

Lemma. For any nonzero A ∈ Mn, there exists B ∈ Mn such that det(B) = 0 and det(B +A) 6= 0.

Indeed, let A =
(

u1|u2| . . . |un

)

, where ui are the columns of A, and, assume, without loss of generality,
that u1 6= 0. Find a basis {u1, v2, . . . , vn} in Rn (or in Fn if our matrices are over a field F ) whose first
element is u1. Now put wi = vi − ui, i = 2, . . . , n, and B =

(

0|w2| . . . |wn

)

; then B is degenerate, but

B +A =
(

u1|v2| . . . |vn
)

is not.

6. Prove that sin 1◦ is irrational.

Solution. Assume that sin 1◦ ∈ Q. Then also cos 2◦ = 1− 2 sin2 1◦ ∈ Q, and cos 4◦ = 2 cos2 2◦ − 1 ∈ Q, amd
by induction, cos 8◦, cos 16◦, cos 32◦ ∈ Q. Now,

cos 30◦ = cos 32◦ cos 2◦ + sin 32◦ sin 2◦.

We have that cos 32◦ cos 2◦ ∈ Q, and also

sin 32◦ sin 2◦ = 2 cos 16◦ sin 16◦ sin 2◦ = 4 cos 16◦ cos 8◦ sin 8◦ sin 2◦ = 8 cos 16◦ cos 8◦ cos 4◦ sin 4◦ sin 2◦

= 16 cos 16◦ cos 8◦ cos 4◦ cos 2◦ sin2 2◦ = 8 cos 16◦ cos 8◦ cos 4◦ cos 2◦(1− cos 4◦) ∈ Q.

So, cos 30◦ ∈ Q, which is false.

Second solution. If, for some x, sinx ∈ Q, then also cos 2x = 1−2 sin2 x ∈ Q, and sin 3x = 3 sinx−4 sin3 x ∈
Q, and so sin 5x = 2 sin 3x cos 2x − sinx ∈ Q. Hence, if one had sin 1◦ ∈ Q, then one would also have
sin 3◦ ∈ Q, so sin 9◦ ∈ Q, so sin 45◦ ∈ Q, which is not the case.

Third solution. For any n ∈ N, cos(nx) = Tn(cosx), where Tn is the nth Chebyshev polynomial of the first
kind, which is a polynomial of degree n with integer coefficients. (The existence of these polynomials can be
easily established by (complete) induction, using the formulas cos(2nx) = 2 cos2(nx)−1 and cos((2n+1)x) =
2 cos((n+1)x) cos(nx)−cosx.) If sin 1◦ ∈ Q, then cos 2◦ = 1−2 sin2 1◦ ∈ Q, and then cos 30◦ = T15(cos 2

◦) ∈
Q, which is not true.

Fourth solution. It also involves Chebyshev’s polynomials. If sin 1◦ is rational, then so is cos 89◦ =
cos(90◦ − 1◦) = sin 1◦ ∈ Q, and then rational is also cos(30 · 89◦) = T30(cos 89

◦). However,

cos(30 · 89◦) = cos 30(90◦ − 1◦) = cos(30 · 90◦ − 30◦) = cos(7 · 360◦ + 180◦ − 30◦) = − cos 30◦ = −
√
3/2

is irrational.

Fifth solution. (For those who are familiar with the theory of field extensions.)

Assume that sin 1◦ ∈ Q. Then cos 1◦ =
√

1− sin2 1◦ is contained in an extension L of Q of degree at
most 2. Then by induction, sin k◦ = sin(k − 1)◦ cos 1◦ + sin 1◦ cos(k − 1)◦ and cos k◦ = cos(k − 1)◦ cos 1◦ −
sin 1◦ sin(k − 1)◦ are also contained in L for all integer k. However, no extension of Q of degree 2 contains
both cos 30◦ =

√
3/2 and cos 45◦ =

√
2/2.
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