## 2019 Gordon exam solutions

1. Prove that there are infinitely many primes $p$ such that for some $n \in \mathbb{N}$ the integer $n^{2}+n+1$ is divisible by $p$.
Solution. For any finite collection of prime integers $p_{1}, \ldots, p_{k}$ put $n=p_{1} \cdots p_{k}$, then the integer $n^{2}+n+1$ is not divisible by any of $p_{i}$; it therefore has a prime divisor distinct from each of $p_{i}$.
2. Let $f$ be the function $(0, \infty) \longrightarrow \mathbb{R}$ defined by: $f(x)=0$ if $x \notin \mathbb{Q}$, and $f(x)=1 / n^{3}$ if $x=m / n$ is rational in lowest terms. If $k \in \mathbb{N}$ is not a perfect square, prove that $f$ is differentiable at $\sqrt{k}$.
Solution. We have $f(\sqrt{k})=0$, and $f(x)=0$ for all irrational $x$; to prove that $f$ is differentiable at the point $\sqrt{k}$ with $f^{\prime}(\sqrt{k})=0$ we only need to show that $\lim _{m / n \rightarrow \sqrt{k}} \frac{1 / n^{3}}{m / n-\sqrt{k} \mid}=0$. For any $m, n \in \mathbb{N}$ such that $m / n<\sqrt{k}+1$ we have

$$
\frac{1 / n^{3}}{|m / n-\sqrt{k}|}=\frac{1}{n^{3}} \cdot \frac{m / n+\sqrt{k}}{\left|(m / n)^{2}-k\right|}<\frac{1}{n} \cdot \frac{2 \sqrt{k}+1}{\left|m^{2}-k n^{2}\right|}<(2 \sqrt{k}+1) / n
$$

since $m^{2}-k n^{2}$ is a nonzero integer. Since $n \longrightarrow \infty$ as $m / n \longrightarrow \sqrt{k}$, we have $\frac{1 / n^{3}}{|m / n-\sqrt{k}|} \longrightarrow 0$.
3. Find the maximum of the integral $\int_{0}^{1}\left(x^{2020} f(x)-x^{2019} f(x)^{2}\right) d x$ over all continuous functions $f:[0,1] \longrightarrow$ $\mathbb{R}$.
Solution. For every $x \in[0,1]$, the expression $x f(x)-f(x)^{2}=(x-f(x)) f(x)$ maximizes when $f(x)=x / 2$, in which case it equals $x^{2} / 4$. Hence, the maximum value of

$$
\int_{0}^{1}\left(x^{2020} f(x)-x^{2019} f(x)^{2}\right) d x=\int_{0}^{1} x^{2019}\left(x f(x)-f(x)^{2}\right) d x
$$

is $\int_{0}^{1} x^{2019}\left(x^{2} / 4\right) d x=\frac{1}{8088}$, and is reached for $f(x)=x / 2, x \in[0,1]$.
4. Let $S=\{z \in \mathbb{C}:|z|=1\}$. Suppose $z_{1}, \ldots, z_{n} \in S$ satisfy $\left|\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)\right| \leq 2$ for every $z \in S$. Prove that $z_{1}, \ldots, z_{n}$ are the vertices of a regular $n$-gon.
Solution. Let $p(z)=\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$. where $a_{0}= \pm z_{1} \cdots z_{n}$, and so, $\left|a_{0}\right|=1$; after multiplying all $z_{i}$ by $a_{0}^{1 / n}$ we may and will assume that $a_{0}=1$. Let $\omega=e^{2 \pi i / n}$; for each $1 \leq d \leq n-1$ we have

$$
\sum_{k=0}^{n-1}\left(\omega^{k}\right)^{d}=\frac{1-\omega^{d n}}{1-\omega^{d}}=0
$$

So,

$$
\left|\sum_{k=0}^{n-1} p\left(\omega^{k}\right)\right|=\left|\sum_{k=0}^{n-1}\left(\omega^{k}\right)^{n}+a_{n-1} \sum_{k=0}^{n-1}\left(\omega^{k}\right)^{n-1}+\cdots+a_{1} \sum_{k=0}^{n-1}\left(\omega^{k}\right)^{1}+\sum_{k=0}^{n-1} a_{0}\right|=|n+0+\cdots+0+n|=2 n
$$

Since $\left|p\left(\omega^{k}\right)\right| \leq 2$ for all $k$, this implies that $\left|p\left(\omega^{k}\right)\right|=2$ for all $k$. Hence, $1, \omega, \ldots, \omega^{n-1}$ are roots of the polynomial $p(z)-2$, so, $p(z)-2=\prod_{k=0}^{n-1}\left(z-\omega_{k}\right)=z^{n}-1$, and so $p(z)=z^{n}+1$. Hence, the roots $z_{1}, \ldots, z_{n}$ of $p$ are the numbers $e^{2 \pi i(k / n+1 / 2)}$, which are indeed located at the vertices of a regular $n$-gon.
5. Suppose $C_{1}, C_{2}$ and $C_{3}$ are cirlces of equal radius inscribed in a circle $C$ and having a common intersection point $O$. For every $1 \leq i \leq 3$ let $A_{i}$ be the tangency point of $C_{i}$ and $C$, and for every $1 \leq i<j \leq 3$ let $B_{i j}$ be the intersection point of $C_{i}$ and $C_{j}$ other than $O$. Prove that for each $1 \leq i<j \leq 3$, the points $A_{i}, B_{i j}$, and $A_{j}$ are collinear.

Solution. Let $O_{1}, O_{2}$ and $O_{3}$ be the centers of the circles $C_{1}, C_{2}$ and $C_{3}$ respectively, and let $r$ be their radius. We claim that the point $O$ is the center of circle $C$, and that $O A_{i}$ are diameters of the circles $C_{i}, i=1,2,3$. Indeed, let $O^{\prime}$ be the center and $R$ be the radius of $C$. For every $i=1,2,3$, the circles $C_{i}$ and $C$ have a common tangent line $l_{i}$ at the point $A_{i}$, so the line orthogonal to $l_{i}$ at $A_{i}$ passes through both $O_{i}$ and $O^{\prime}$, and so, $\left|O^{\prime} O_{i}\right|=R-r$. Hence, $O^{\prime}$ is equidistant from the points $O_{1}, O_{2}, O_{3}$; but the point $O$ is also equidistant from these points, with $\left|O O_{i}\right|=r$ for all $i$; thus $O^{\prime}=O, R-r=r$, and $O A_{i}$ are diameters of $C_{i}$.
Now, if $B_{1}$ is the point of intersection of the line $A_{1} A_{2}$ with $C_{1}$, then, since $O A_{1}$
 is a diameter of $C_{1}$, we have $\angle O B_{1} A_{1}=\pi / 2$, so $O B_{1}$ is orthogonal to $A_{1} A_{2}$. But also $O B_{2}$ is orthogonal to $A_{1} A_{2}$, where $B_{2}$ is the point of intersection $A_{1} A_{2}$ with $C_{2}$; hence, $B_{1}=B_{2}=B_{1,2}$.
6. Let $A=\left(\begin{array}{ccccc}a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\ a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\ \vdots & \vdots & \vdots \\ a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}\end{array}\right)$ be an $n \times n$ real matrix with zero trace, i.e. $\sum_{i=1}^{n} a_{i, i}=0$. Prove that $A$ is conjugate to a matrix with zero main diagonal. (That is, prove there exists an invertible $n \times n$ matrix $P$ such that $P A P^{-1}=\left(\begin{array}{ccccc}0 & b_{1,2} & \cdots & b_{1, n} \\ b_{2,1} & 0 & \cdots & b_{2, n} \\ \vdots & \vdots & & \vdots \\ b_{n, 1} & b_{n, 2} & \ldots & 0\end{array}\right)$ for some real numbers $b_{i, j}$.)
Solution. We will use induction on $n$; if $n=1$, then $A=0$. Assume that $A \neq 0$. Since $A$ is not a scalar matrix, there exists $u \in \mathbb{R}^{n}$ such that $A u$ and $u$ are linearly independent; find a basis in $\mathbb{R}^{n}$ whose first two elements are $u$ and $A u$. In this new basis (and the operation of change of basis is known to be equivalent to the operation of conjugation), $A$ takes the form $A^{\prime}=\left(\begin{array}{ccccc}0 & c_{1,2} & \ldots & c_{1, n} \\ 1 & c_{2,2} & \ldots & c_{2, n} \\ \vdots & \vdots & & \vdots \\ 0 & c_{n, 2} & \ldots & c_{n, n}\end{array}\right)=\left(\begin{array}{ccc}0 & C_{1} \\ C_{2} & C\end{array}\right)$, where $C_{1}, C_{2}$ and $C$ are, respectively, $1 \times(n-1),(n-1) \times 1$ and $(n-1) \times(n-1)$ matrices, and trace $C=$ trace $A^{\prime}-0=$ trace $A-0=0$. By induction, $C$ is conjugate to a matrix $Q C Q^{-1}$ with zero main diagonal; then $\left(\begin{array}{ll}1 & 0 \\ 0 & Q\end{array}\right) A^{\prime}\left(\begin{array}{ll}1 & 0 \\ 0 & Q\end{array}\right)^{-1}=\left(\begin{array}{cc}0 & C_{1} Q^{-1} \\ Q C_{2} & Q C Q^{-1}\end{array}\right)$ is a matrix with zero main diagonal which is conjugate to $A$.

