2020 Gordon exam solutions

1. Evaluate $\int_{-\pi}^{\pi} \frac{\sin (2020 x)}{\left(1+2^{x}\right) \sin x} d x$.

Solution.

$$
\begin{aligned}
\int_{-\pi}^{\pi} \frac{\sin (2020 x)}{\left(1+2^{x}\right) \sin x} d x & =\int_{0}^{\pi} \frac{\sin (2020 x)}{\left(1+2^{x}\right) \sin x} d x+\int_{0}^{\pi} \frac{\sin (-2020 x)}{\left(1+2^{-x}\right) \sin (-x)} d x \\
& =\int_{0}^{\pi} \frac{\sin (2020 x)}{\left(1+2^{x}\right) \sin x} d x+\int_{0}^{\pi} \frac{2^{x} \sin (2020 x)}{\left(1+2^{x}\right) \sin x} d x=\int_{0}^{\pi} \frac{\sin (2020 x)}{\sin x} d x \\
& =\int_{0}^{\pi / 2} \frac{\frac{\sin (2020 x)}{\sin x} d x+\int_{0}^{\pi / 2} \frac{\sin (2020(\pi-x))}{\sin (\pi-x)} d x}{} \\
& =\int_{0}^{\pi / 2} \frac{\sin (2020 x)}{\sin x} d x-\int_{0}^{\pi / 2} \frac{\sin (2020 x)}{\sin x} d x=0
\end{aligned}
$$

2. Let $G=\left\{A_{1}, \ldots, A_{n}\right\}$ be a finite multiplicative group of real $k \times k$ matrices, and let $S=\sum_{i=1}^{n} A_{i}$. If $\operatorname{trace}(S)=0$, prove that $S=0$.
Solution. For every $i=1, \ldots, n$, multiplication by A_{i} permutes the elements of G, so $A_{i} S=S$, and so $S^{2}=\sum_{i=1}^{n} A_{i} S=n S$. For $P=\frac{1}{n} S$, we therefore have $P^{2}=P$, that is, the linear transformation defined by P is a projection. Hence, P is diagonaliziable with all eigenvalues equal to either 0 or 1 ; if $\operatorname{trace} S=n$ trace $P=0$, then all eigenvalues of P are zeroes, and $P=0$.
3. Find all $b \in \mathbb{N}$ for which $\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}$ is an integer.

Solution. Let $\alpha=\sqrt[3]{2+\sqrt{b}}, \beta=\sqrt[3]{2-\sqrt{b}}$, and $n=\alpha+\beta$. We have

$$
n^{3}=(\alpha+\beta)^{3}=\alpha^{3}+\beta^{3}+3(\alpha+\beta) \alpha \beta=4+3 n \sqrt[3]{4-b}
$$

Hence,

$$
4-b=\frac{1}{27}\left(n^{2}-4 / n\right)^{3}=\frac{1}{27}\left(x^{6}-12 n^{3}+48-(4 / n)^{3}\right)
$$

If both b and n are integers, then $4 / n$ is an integer, so $n= \pm 1, \pm 2, \pm 4$. Now, if $n=-1,2$, or -4 , then $n^{2}-4 / n$ is not divisible by 3 and b is fractional; if $n=1$, then $b=5$; if $n=-2$ then $b=-4$; if $n=4$ then $b=-121$. Since $b>0$, we see that the only valid solution is $b=5$.
4. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$. Prove that $\sum_{i, j=1}^{n} e^{v_{i} \cdot v_{j}} \geq n^{2}$.

Solution. By the AM-GM inequality,

$$
\sum_{i, j=1}^{n} e^{v_{i} \cdot v_{j}} \geq n^{2}\left(\prod_{i, j=1}^{n} e^{v_{i} \cdot v_{j}}\right)^{1 / 2}=n^{2}\left(e^{\Sigma_{i, j=1}^{n} v_{i} \cdot v_{j}}\right)^{1 / 2}=n^{2}\left(e^{\left|\Sigma_{i}^{n} v_{i}\right|^{2}}\right)^{1 / 2} \geq n^{2}
$$

since $\left|\sum_{i}^{n} v_{i}\right|^{2} \geq 0$.
5. Let $a, b \in \mathbb{R}, a b=1$. Evaluate $\operatorname{det}\left(\begin{array}{ccccc}2 & a & a^{2} & \ldots & a^{n-1} \\ b & 2 & a & \ldots & a^{n-2} \\ b^{2} & b & 2 & \ldots & a^{n-3} \\ \vdots & \vdots & \vdots & \ldots \\ b^{n-1} & b^{n-2} & b^{n-3} & \ldots & 2\end{array}\right)$.

Solution. Let $A=\left(\begin{array}{ccccc}2 & a & a^{2} & \ldots & a^{n-1} \\ b & 2 & a & \ldots & a^{n-2} \\ b^{2} & b & 2 & \ldots & a^{n-3} \\ \vdots & \vdots & \vdots & & \vdots \\ b^{n-1} & b^{n-2} & b^{n-3} & \ldots & 2\end{array}\right)$, then $A=I+B$ where $B=\left(\begin{array}{ccccc}1 & a & a^{2} & \ldots & a^{n-1} \\ b & 1 & a & \ldots & a^{n-2} \\ b^{2} & b & 1 & \ldots & a^{n-3} \\ \vdots & \vdots & \vdots & & \vdots \\ b^{n-1} & b^{n-2} & b^{n-3} & \ldots & 1\end{array}\right)$. B has rank $1,-$ all its columns are multiples of $u=\left(\begin{array}{c}1 \\ b \\ b^{2} \\ \vdots \\ b^{n-1}\end{array}\right)$; so, the null space of B is $(n-1)$-dimensional. We have
$B u=n u$, so B has the eigenvalues 0 , of multiplicity $n-1$, and n. The eigenvalues of $A=I+B$ are therefore 1 , of multiplicity $n-1$, and $n+1$, and $\operatorname{det} A=n+1$.
Another solution. After multiplying the rows of the matrix successively by $1, a, a^{2}, \ldots, a^{n-1}$ and then dividing the columns successively by $1, a, a^{2}, \ldots, a^{n-1}$ we get the matrix $\left(\begin{array}{cccccc}2 & 1 & 1 & \ldots & 1 \\ 1 & 2 & 1 & \ldots & 1 \\ 1 & 2 & 1 & 1 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & 1 & \ldots & 2\end{array}\right)$. Next, after subtracting the first row of this matrix from all other rows we get $\left(\begin{array}{ccccc}2 & 1 & 1 & \ldots & 1 \\ -1 & 1 & \cdots & 0 \\ -1 & 0 & 1 & 0 \\ \vdots & 1 & \vdots & 0 \\ -1 & 0 & 0 & \vdots \\ -1 & 0 & \ldots & 1\end{array}\right)$, and after adding to the first column all other columns we get the matrix $\left(\begin{array}{ccccc}n+1 & 1 & 1 & \ldots & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ & 0 & 1 & \vdots & 0 \\ 0 & 0 & 0 & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$ with determinant $n+1$. Since these row-column operations don't affect the determinant, the determinant of the original matrix is also equal to $n+1$.
6. Suppose a 10×10 board has some of its 1×1 squares colored red. After each minute passes, every non-red square that shares a side with at least two red squares also becomes red. If there are exactly 9 red squares at the start, may it happen that eventually all squares of the board become red?

Solution. Let $N(k)$ be the number of edges between red and non-red squares after k kminutes. (We count the exterior of the board as non-red squares.) At the start, there are 9 red squares, so $N(0) \leq 36$. The perimeter of the whole board is 40 , so to make the board red, the value $N(0)$ has to increase from at most 36 to 40 . But $N(k)$ cannot increase as time passes. Indeed, each "new" red square has at least 2 sides in common with some already-red squares. That
 new square adds atmost 2 new edges to $N(k)$, but also subtracts at least 2 edges (since the previous boundary edges are no longer between red and non-red). Therefore, $N(k)$ cannot increase, and the board cannot become all red.

