
Solutions to 2011 Rasor-Bareis Prize examination problems

1. The vertices of a regular 2011-gon are colored in two colors. Prove that some three vertices of the same

color form an isosceles triangle.

Solution. The argument we suggest solves this problem with a regular n-gon for any odd n ≥ 5. Let “the
colors” the vertices are colored are black and white, B and W . Let us denote the vertices of the n-gon by
vi, i = 1, . . . , n, and write vi = B or vi = W if the vertex vi is colored black or, respectively, white. Since n
is odd, there are two neighboring vertices colored the same color; let the vertices be v2 and v3 and the color
be B: v2 v3

Now, if v1 = B we have a monochromatic isosceles triangle △v1v2v3:

v1
v2 v3

If v4 = B we have a monochromatic isosceles triangle △v2v3v4:

v2 v3 v4

Thus, let us assume that v1 = v4 = W . But then, if v(n+5)/2 = B the triangle △v2v(n+5)/2v3 is isosceles:

v1
v2 v3 v4

v(n+5)/2

and if v(n+5)/2 = W the triangle △v1v(n+5)/2v4 is isosceles:

v1
v2 v3 v4

v(n+5)/2

2. Let g(x) = a0 + a1x
r1 + a2x

r2 + . . .+ anxrn , x > 0, where n ∈ N, a0, a1, . . . , an are nonzero real numbers

and r1, . . . , rn are distinct nonzero real numbers. Prove that g has at most n zeroes in (0,∞).

Solution. We will use induction on n ≥ 0; for n = 0 the assertion is clearly true.
We have g′(x) = a1r1x

r1−1 + a2r2x
r2−1 + . . . + anrnxrn−1. If g′ = 0 then g is a nonzero constant,

so it has no zeroes at all; assume that g′ 6= 0. Thus, after collecting simular terms, g′ takes the form
g′(x) = b0x

s0 + b1x
s1 + . . . + bmxsm for some 0 ≤ m < n, nonzero bi and distinct si. Let f(x) = x−s0g′(x) =

b0 + b1x
p1 + . . . + anxpm , where pi = si − s1, i = 1, . . . , m; then f has the same zeroes on (0,∞) as g′. By

(complete) induction, f has at most m zeroes, so g′ has at most m ≤ n − 1 zeroes. But then g has at most
n zeroes, since, by Rolle’s theorem, between any two roots of g there is a root of g′.
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3. Let ABC be an equilateral triangle and P be a point on the arc AC of the circumscribed circle. Prove

that |BP | = |AP | + |CP |.

Solution. Let a = |AB| (= |BC| = |AC|). Let Q be
the point of intersection of the intervals AC and BP .
The triangles ABQ and ABP are similar; indeed,
they have a common angle at the vertex B and the
angles 6 BAQ and 6 BPA are equal (both are equal
to π/3) since they are subtended by equal chords.

A

B

C

P

Q

It follows that
|AP |/|AQ| = |BP |/|AB|,

so
|AP | = |BP | · |AQ|/a.

Similarly (from the similarity of the triangles CBQ and CBP ),

|CP | = |BP | · |CQ|/a.

Hence,
|AP | + |CP | = |BP | · (|AQ| + |CQ|)/a = |BP | · a/a = |BP |.

Another solution. Let R be the point on the ray [A, P ) on the
other side of P than A and such that |PR| = |PC|. Since 6 ABC =
π/3, the angle 6 APC = 2π/3, and so 6 CPR = π/3. Hence, the
triangle △CPR is equilateral. So, 6 CRP = π/3 = 6 CPB; since
also 6 CAP = 6 CBP and |AC| = |BC|, the triangles △BCP and
△ACR are congruent (or “equal”, in another terminology). So,
|BP | = |AR| = |AP | + |PR| = |AP | + |CP |.

A

B

C

P
R

Yet another solution. Let D be the point on the circle between
B and C such that the arc BD is equal to the arc CP . Let R
be the point of intersection of the lines DC and AP . (They meet
since DC is parallel to BP , and AP and BP meet.) The an-
gle 6 ADC = 6 ABC = π/3, and the angle 6 DAP = 6 DAC +
6 CAP = 6 DAC + 6 BAD = 6 BAC = π/3, so, the triangle
△ADR is equilateral. Thus, |AR| = |AD|. Also, since |AB| =
|BC| and the arcs BD and CP are equal, |AD| = |BP |. So,
|AR| = |BP |. Next, the trianle △PRC is equilateral, since
6 CRP = 6 RPC = π/3, so |PR| = |PC| and |AR| = |AP |+ |PC|.
Hence, |AP | + |PC| = |BP |.

A

B

C

P
R

D

4. Prove that for any real numbers a, b, c, a4 + b4 + c4 ≥ abc(a + b + c).

Solution. By the arithmetic-geometric mean inequality,

a4 + b4 + c4 = 1
2 (a4 + b4) + 1

2 (b4 + c4) + 1
2 (c4 + a4) ≥

√
a4b4 +

√
b4c4 +

√
c4a4 = a2b2 + b2c2 + c2a2.

Applying this inequality again, we get

a2b2 + b2c2 + c2a2 = 1
2 (a2b2 + b2c2) + 1

2 (b2c2 + c2a2) + 1
2 (c2a2 + a2b2)

≥
√

a2b4c2 +
√

b2c4a2 +
√

c2a4b2 ≥ ab2c + bc2a + ca2b = abc(a + b + c).

(
√

a2b4c2 > ab2c if ac < 0 and b 6= 0.)

2



5. Solve the equation
x

2 +
x

2 + . . .
2 + x

2+
x

1+
√

1+x

= 1, where “ 2” appears 2011 times.

Solution. Since, clearly, x 6= 0, we have

x

1 +
√

1 + x
=

x√
1 + x + 1

·
√

1 + x − 1√
1 + x − 1

= x ·
√

1 + x − 1

(1 + x) − 1
=

√
1 + x − 1,

and so,

2 +
x

1 +
√

1 + x
= 1 +

√
1 + x.

Thus, also 2 +
x

2 + x
1+

√
1+x

= 2 +
x

1 +
√

1 + x
= 1 +

√
1 + x, and by induction,

2 +
x

2 + . . .
2 + x

2+
x

1+
√

1+x

= 1 +
√

1 + x,

independently of how many times the “2” appears... So, the equation we need to solve is x
1+

√
1+x

= 1, which

is equivalent to
√

1 + x − 1 = 1, from which x = 3.

6. Let a polynomial p(x, y) satisfy p(x + y, y − x) = p(x, y) for all x, y ∈ R. Prove that p is constant.

Solution. For any x, y ∈ R, applying the identity p(u + v, u − v) = p(u, v) to u = x + y, v = x − y, we get

p(x − y, x + y) = p(u + v, u − v) = p(2y,−2x);

so, p(x, y) = p(2y,−2x). Applying this new identity twice we obtain that p(x, y) = p(−4x,−4y). But this
implies that p is constant. Indeed, if p has a nontrivial monomial cxnym, c 6= 0, then the corresponding mono-
mial of p(−4x,−4y) is (−4)n+mcxnym 6= cxnym; but two polynomials are equal iff all their corresponding
monomials are equal. (We consider this fact as well known and leave it without proof.)

Actually, the proven fact remains true if p is not a polynomial but any function continuous at 0. Indeed,
let p be such a function and let p(0, 0) = a. Since p is continuous at 0, for any ε > 0 there exists δ > 0 such
that |p(x, y) − a| < ε whenever |x|, |y| < δ. But for any x, y we can find k ∈ N such that 4−k|x|, 4−k|y| < δ,
and then

|p(x, y) − a| =
∣

∣p((−4)−kx, (−4)−ky) − a
∣

∣ < ε.

Since this is true for any ε > 0, we have p(x, y) = a for all x, y ∈ R.

3


