Solutions to 2011 Rasor-Bareis Prize examination problems

1. The vertices of a regular 2011-gon are colored in two colors. Prove that some three vertices of the same color form an isosceles triangle.
Solution. The argument we suggest solves this problem with a regular n-gon for any odd $n \geq 5$. Let "the colors" the vertices are colored are black and white, B and W. Let us denote the vertices of the n-gon by $v_{i}, i=1, \ldots, n$, and write $v_{i}=B$ or $v_{i}=W$ if the vertex v_{i} is colored black or, respectively, white. Since n is odd, there are two neighboring vertices colored the same color; let the vertices be v_{2} and v_{3} and the color be B :

Now, if $v_{1}=B$ we have a monochromatic isosceles triangle $\triangle v_{1} v_{2} v_{3}$:

If $v_{4}=B$ we have a monochromatic isosceles triangle $\triangle v_{2} v_{3} v_{4}$:

Thus, let us assume that $v_{1}=v_{4}=W$. But then, if $v_{(n+5) / 2}=B$ the triangle $\triangle v_{2} v_{(n+5) / 2} v_{3}$ is isosceles:

and if $v_{(n+5) / 2}=W$ the triangle $\triangle v_{1} v_{(n+5) / 2} v_{4}$ is isosceles:

2. Let $g(x)=a_{0}+a_{1} x^{r_{1}}+a_{2} x^{r_{2}}+\ldots+a_{n} x^{r_{n}}, x>0$, where $n \in \mathbb{N}, a_{0}, a_{1}, \ldots, a_{n}$ are nonzero real numbers and r_{1}, \ldots, r_{n} are distinct nonzero real numbers. Prove that g has at most n zeroes in $(0, \infty)$.

Solution. We will use induction on $n \geq 0$; for $n=0$ the assertion is clearly true.
We have $g^{\prime}(x)=a_{1} r_{1} x^{r_{1}-1}+a_{2} r_{2} x^{r_{2}-1}+\ldots+a_{n} r_{n} x^{r_{n}-1}$. If $g^{\prime}=0$ then g is a nonzero constant, so it has no zeroes at all; assume that $g^{\prime} \neq 0$. Thus, after collecting simular terms, g^{\prime} takes the form $g^{\prime}(x)=b_{0} x^{s_{0}}+b_{1} x^{s_{1}}+\ldots+b_{m} x^{s_{m}}$ for some $0 \leq m<n$, nonzero b_{i} and distinct s_{i}. Let $f(x)=x^{-s_{0}} g^{\prime}(x)=$ $b_{0}+b_{1} x^{p_{1}}+\ldots+a_{n} x^{p_{m}}$, where $p_{i}=s_{i}-s_{1}, i=1, \ldots, m$; then f has the same zeroes on $(0, \infty)$ as g^{\prime}. By (complete) induction, f has at most m zeroes, so g^{\prime} has at most $m \leq n-1$ zeroes. But then g has at most n zeroes, since, by Rolle's theorem, between any two roots of g there is a root of g^{\prime}.
3. Let $A B C$ be an equilateral triangle and P be a point on the arc $A C$ of the circumscribed circle. Prove that $|B P|=|A P|+|C P|$.
 the point of intersection of the intervals $A C$ and $B P$. The triangles $A B Q$ and $A B P$ are similar; indeed, they have a common angle at the vertex B and the angles $\angle B A Q$ and $\angle B P A$ are equal (both are equal to $\pi / 3)$ since they are subtended by equal chords.

It follows that

$$
|A P| /|A Q|=|B P| /|A B|
$$

so

$$
|A P|=|B P| \cdot|A Q| / a
$$

Similarly (from the similarity of the triangles $C B Q$ and $C B P$),

$$
|C P|=|B P| \cdot|C Q| / a
$$

Hence,

$$
|A P|+|C P|=|B P| \cdot(|A Q|+|C Q|) / a=|B P| \cdot a / a=|B P| .
$$

Another solution. Let R be the point on the ray $[A, P)$ on the other side of P than A and such that $|P R|=|P C|$. Since $\angle A B C=$ $\pi / 3$, the angle $\angle A P C=2 \pi / 3$, and so $\angle C P R=\pi / 3$. Hence, the triangle $\triangle C P R$ is equilateral. So, $\angle C R P=\pi / 3=\angle C P B$; since also $\angle C A P=\angle C B P$ and $|A C|=|B C|$, the triangles $\triangle B C P$ and $\triangle A C R$ are congruent (or "equal", in another terminology). So, $|B P|=|A R|=|A P|+|P R|=|A P|+|C P|$.

Yet another solution. Let D be the point on the circle between B and C such that the $\operatorname{arc} B D$ is equal to the $\operatorname{arc} C P$. Let R be the point of intersection of the lines $D C$ and $A P$. (They meet since $D C$ is parallel to $B P$, and $A P$ and $B P$ meet.) The angle $\angle A D C=\angle A B C=\pi / 3$, and the angle $\angle D A P=\angle D A C+$ $\angle C A P=\angle D A C+\angle B A D=\angle B A C=\pi / 3$, so, the triangle $\triangle A D R$ is equilateral. Thus, $|A R|=|A D|$. Also, since $|A B|=$ $|B C|$ and the arcs $B D$ and $C P$ are equal, $|A D|=|B P|$. So, $|A R|=|B P|$. Next, the trianle $\triangle P R C$ is equilateral, since $\angle C R P=\angle R P C=\pi / 3$, so $|P R|=|P C|$ and $|A R|=|A P|+|P C|$.
 Hence, $|A P|+|P C|=|B P|$.
4. Prove that for any real numbers $a, b, c, \quad a^{4}+b^{4}+c^{4} \geq a b c(a+b+c)$.

Solution. By the arithmetic-geometric mean inequality,
$a^{4}+b^{4}+c^{4}=\frac{1}{2}\left(a^{4}+b^{4}\right)+\frac{1}{2}\left(b^{4}+c^{4}\right)+\frac{1}{2}\left(c^{4}+a^{4}\right) \geq \sqrt{a^{4} b^{4}}+\sqrt{b^{4} c^{4}}+\sqrt{c^{4} a^{4}}=a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}$.
Applying this inequality again, we get

$$
\begin{aligned}
a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}=\frac{1}{2}\left(a^{2} b^{2}+b^{2} c^{2}\right) & +\frac{1}{2}\left(b^{2} c^{2}+c^{2} a^{2}\right)+\frac{1}{2}\left(c^{2} a^{2}+a^{2} b^{2}\right) \\
& \geq \sqrt{a^{2} b^{4} c^{2}}+\sqrt{b^{2} c^{4} a^{2}}+\sqrt{c^{2} a^{4} b^{2}} \geq a b^{2} c+b c^{2} a+c a^{2} b=a b c(a+b+c)
\end{aligned}
$$

$\left(\sqrt{a^{2} b^{4} c^{2}}>a b^{2} c\right.$ if $a c<0$ and $\left.b \neq 0.\right)$
5. Solve the equation $\frac{x}{2+\frac{x}{2+\cdot \cdot{ }_{2}+\frac{x}{2+\frac{x}{1+\sqrt{1+x}}}}}=1$, where" 2 " appears 2011 times.

Solution. Since, clearly, $x \neq 0$, we have

$$
\frac{x}{1+\sqrt{1+x}}=\frac{x}{\sqrt{1+x}+1} \cdot \frac{\sqrt{1+x}-1}{\sqrt{1+x}-1}=x \cdot \frac{\sqrt{1+x}-1}{(1+x)-1}=\sqrt{1+x}-1,
$$

and so,

$$
2+\frac{x}{1+\sqrt{1+x}}=1+\sqrt{1+x}
$$

Thus, also $2+\frac{x}{2+\frac{x}{1+\sqrt{1+x}}}=2+\frac{x}{1+\sqrt{1+x}}=1+\sqrt{1+x}$, and by induction,

$$
2+\frac{x}{2+\cdot \cdot_{2}+\frac{x}{2+\frac{x}{1+\sqrt{1+x}}}}=1+\sqrt{1+x}
$$

independently of how many times the "2" appears... So, the equation we need to solve is $\frac{x}{1+\sqrt{1+x}}=1$, which is equivalent to $\sqrt{1+x}-1=1$, from which $x=3$.
6. Let a polynomial $p(x, y)$ satisfy $p(x+y, y-x)=p(x, y)$ for all $x, y \in \mathbb{R}$. Prove that p is constant.

$$
p(x-y, x+y)=p(u+v, u-v)=p(2 y,-2 x)
$$

so, $p(x, y)=p(2 y,-2 x)$. Applying this new identity twice we obtain that $p(x, y)=p(-4 x,-4 y)$. But this implies that p is constant. Indeed, if p has a nontrivial monomial $c x^{n} y^{m}, c \neq 0$, then the corresponding monomial of $p(-4 x,-4 y)$ is $(-4)^{n+m} c x^{n} y^{m} \neq c x^{n} y^{m}$; but two polynomials are equal iff all their corresponding monomials are equal. (We consider this fact as well known and leave it without proof.)

Actually, the proven fact remains true if p is not a polynomial but any function continuous at 0 . Indeed, let p be such a function and let $p(0,0)=a$. Since p is continuous at 0 , for any $\varepsilon>0$ there exists $\delta>0$ such that $|p(x, y)-a|<\varepsilon$ whenever $|x|,|y|<\delta$. But for any x, y we can find $k \in \mathbb{N}$ such that $4^{-k}|x|, 4^{-k}|y|<\delta$, and then

$$
|p(x, y)-a|=\left|p\left((-4)^{-k} x,(-4)^{-k} y\right)-a\right|<\varepsilon
$$

Since this is true for any $\varepsilon>0$, we have $p(x, y)=a$ for all $x, y \in \mathbb{R}$.

