Solutions to 2012 Rasor-Bareis Prize examination problems

1. Let $n \in \mathbb{N}$ and $a \in \mathbb{R}$. Solve, in real numbers, the system of equations

$\begin{cases} x_1 + \dots + x_r \\ x_1^2 + \dots + x_r^2 \\ x_1^3 + \dots + x_r^3 \end{cases}$	$egin{array}{lll} a_{1}^{n}&=a\ a_{2}^{2}&=a^{2}\ a_{1}^{3}&=a^{3} \end{array}$	(1) (2) (3)
$\left(\begin{array}{c} \vdots\\ x_1^n + \ldots + x_n^n\end{array}\right)$		$\vdots (n)$

<u>Solution</u>. We will show that the only solutions of the system are $(a, 0, 0, \ldots, 0, 0)$, $(0, a, 0, \ldots, 0, 0)$, ..., Solution. We will show that the only solutions of the system are (a, b, c, b, ..., c, r), $(x_1 + x_2 = a)$ (0, 0, 0, ..., 0, a). If n = 1, we have only one equation $x_1 = a$. If n = 2, we have the system $\begin{cases} x_1 + x_2 = a \\ x_1^2 + x_2^2 = a^2 \end{cases}$, from which $2x_1x_2 = (x_1 + x_2)^2 - (x_1^2 + x_2^2) = a^2 - a^2 = 0$, so either $x_1 = 0$, $x_2 = a$, or $x_2 = 0$, $x_1 = a$. Let $n \ge 3$. From equation (2), either $x_i^2 = a^2$ for some i and $x_j = 0$ for all $j \ne i$, or $|x_i| < |a|$ for all i.

But if $|x_i| < |a|$ for all *i*, then

$$|x_1^3 + \ldots + x_n^3| \le x_1^2 |x_1| + \ldots + x_n^2 |x_n| < (x_1^2 + \ldots + x_n^2) |a| = |a|^3,$$

which contradicts equation (3). Thus, the first possibility may only take place, that is, $x_i^2 = a^2$ for some i and $x_i = 0$ for all $j \neq i$. And from equation (1), $x_i = a$.

2. Let f be a real-valued function on [0,1] such that f(0) = f(1) = 0 and $f\left(\frac{x+y}{2}\right) \leq f(x) + f(y)$ for all $x, y \in [0, 1]$. Prove that the set of zeroes of f is dense in [0, 1].

<u>Solution</u>. Since the dyadic rationals (numbers of the form $\frac{k}{2^n}$, $n \in \mathbb{N}$, $k \in \mathbb{Z}$) are dense in \mathbb{R} , it suffices to show that f(r) = 0 for any dyadic rational $r \in [0, 1]$. For any $x \in [0, 1]$ we have $f(x) = f\left(\frac{x+x}{2}\right) \leq f(x) + f(x)$, so $f(x) \ge 0$. Now, if for some $x, y \in [0,1]$ we have f(x) = f(y) = 0, then $f\left(\frac{x+y}{2}\right) \le f(x) + f(y) = 0$, so $f\left(\frac{x+y}{2}\right) = 0$. Thus, f(0) = f(1) = 0 implies that $f\left(\frac{1}{2}\right) = 0$, then $f\left(\frac{1}{4}\right) = 0$ and $f\left(\frac{3}{4}\right) = 0$, and by induction on n, $f(\frac{k}{2^n}) = 0$ for all $n \in \mathbb{N}$ and all integer k with $0 \le k \le 2^n$.

3. Prove that for any $x \in \mathbb{R}$, $\sin(\cos x) < \cos(\sin x)$.

<u>Solution</u>. By periodicity of sin and cos, it suffices to prove the inequality for $x \in [-\pi, \pi]$ only.

For x = 0 we have $\sin(\cos 0) = \sin 1 < 1 = \cos(\sin 0)$.

For any y > 0, sin y < y; so, for any $x \in (0, \pi/2)$, since $\cos x > 0$, we have $\sin(\cos x) < \cos x$. Also, for any $x \in (0, \pi/2), 0 < \sin x < x < \pi/2$ and cos is a strictly decreasing function on $[0, \pi/2]$, so $\cos x < \cos(\sin x)$. Hence, $\sin(\cos x) < \cos x < \cos(\sin x)$.

For $x \in [\pi/2, \pi], -1 \le \cos x \le 0$, so $\sin(\cos x) \le 0$, whereas $0 \le \sin x \le 1$, so $\cos(\sin x) \ge \cos 1 > 0$. So, $\sin(\cos x) < \cos(\sin x).$

For any $x \in [-\pi, 0]$ we have $\sin(\cos x) = \sin(\cos(-x)) < \cos(\sin(-x)) = \cos(-\sin x) = \cos(\sin x)$. So, $\sin(\cos x) < \cos(\sin x)$ for all $x \in [-\pi, \pi]$.

<u>Another solution</u>. At x = 0, $\sin(\cos x) = \sin 1 < 1 = \cos(\sin x)$. Both $\sin(\cos x)$ and $\cos(\sin x)$ are continuous functions, so if there exists x such that $\sin(\cos x) \ge \cos(\sin x)$, then by the intermediate value theorem there exists x such that $\sin(\cos x) = \cos(\sin x)$. For this x we have $\cos(\frac{\pi}{2} - \cos x) = \cos(\sin x)$, so $\frac{\pi}{2} - \cos x = \cos(\sin x)$. $\pm \sin x + 2n\pi$ for some $n \in \mathbb{Z}$, so $\cos x \pm \sin x = \frac{\pi}{2} - 2n\pi$ for some $n \in \mathbb{Z}$. But for any $n \in \mathbb{Z}$ and for all $x \in \mathbb{R},$

$$\left|\frac{\pi}{2} - 2n\pi\right| \ge \frac{\pi}{2} > \sqrt{2} \ge |\cos x \pm \sin x|,$$

contradiction.

4. Given a triangle $\triangle ABC$, find the set of points P inside this triangle such that $\operatorname{area}(\triangle APC) =$ $2 \operatorname{area}(\triangle APB).$

<u>Solution</u>. Let P be a point inside $\triangle ABC$, and let D be the point of intersection of the line (AP) with the side BC of the triangle; we will prove that $\operatorname{area}(\triangle APC)/\operatorname{area}(\triangle APB) = |CD|/|BD|$. Let M and N be the feet of the perpendiculars dropped from the vertices B and Cto (AP). We have $\operatorname{area}(\triangle APC) = |AP| \cdot |CN|$ and $\operatorname{area}(\triangle APB) =$ $|AP| \cdot |BM|$, so area $(\triangle APC)/\operatorname{area}(\triangle APB) = |CN|/|BM|$. But the triangles $\triangle CND$ and $\triangle BMD$ are similar (since their sides are parallel), so |CN|/|BM| = |CD|/|BD|.

Hence, area $(\triangle APC) = 2 \operatorname{area}(\triangle APB)$ iff |CD| = 2|BD|. But there exists only one such point D on the side BC; hence, the points P satisfying the condition form the interval AD, where D is the point on the side BC for which |CD| = 2|BD|.

5. Every point of the plane is colored one of three colors, red, blue, or green. Prove that for any x > 0 there are points P and Q in the plane having the same color and such that d(P,Q) = x, where d(P,Q) denotes the distance between P and Q.

Solution. Assume that for some x > 0 there are no points P, Q of the same color with d(P,Q) = x. Take any point O in the plane; wlog, assume that it is red. Then all points on the circle C of radius x centered at O are either blue or green. Take any point P on C; wlog, let P be blue. Then the point Q on C with d(P,Q) = x must be green. Hence, the point R outside of C with d(R, P) = d(R, Q) = x is red. When P runs the circle C, the corresponding point R runs the circle S of radius $\sqrt{3x}$ centered at O; so, all points of S are red. However, there are points on S with distance x between them, contradiction.

6. Find all $n \in \mathbb{N}$ such that $p = \lfloor \frac{n^2}{3} \rfloor$ is prime.

<u>Solution</u>. We will show that n = 3 (for which p = 3) and n = 4 (for which p = 5) are the only solutions. First, note that n = 1 and n = 2 don't fit.

For $n \ge 3$ we have 3 possibilities: n = 3k, n = 3k + 1, and n = 3k + 2 for some $k \in \mathbb{N}$.

If n = 3k, then $p = \left|\frac{9k^2}{3}\right| = 3k^2$, is divisible by k, and is prime only if k = 1.

If n = 3k + 1, then $p = \lfloor \frac{9k^2 + 6k + 1}{3} \rfloor = 3k^2 + 2k$, is divisible by k, and is prime only if k = 1. If n = 3k + 2, then $p = \lfloor \frac{9k^2 + 12k + 4}{3} \rfloor = 3k^2 + 4k + 1 = (3k + 1)(k + 1)$, and is not prime for any k. Hence, n = 3 and n = 4 are the only solutions.