Solutions to 2012 Rasor-Bareis Prize examination problems

1. Letn € N and a € R. Solve, in real numbers, the system of equations

T1+... .+ =a (1)
23+ ...+ 12 =a? (2)
2+ +ad=add (3)
P+ .. a2l =a” (n)

Solution. We will show that the only solutions of the system are (a,0,0,...,0,0), (0,q,0,...,0,0),
r1+xTo=a
x% + x% = a2,
from which 2z129 = (21 + 22)? — (22 + 23) = a® — a® = 0, so either 1 =0, 29 = a, or 2 = 0, 71 = a.

Let n > 3. From equation (2), either 27 = a? for some i and z; = 0 for all j # i, or |z;| < |a| for all i.
But if |z;| < |a| for all ¢, then

(0,0,0,...,0,a). If n =1, we have only one equation x; = a. If n = 2, we have the system

2

led 4+l <@t . 2R ] < (22 4. 4 22)|a] = |af?,

which contradicts equation (3). Thus, the first possibility may only take place, that is, 2 = a? for some i
and z; = 0 for all j # 4. And from equation (1), z; = a.

2. Let f be a real-valued function on [0,1] such that f(0) = f(1) = 0 and f(ZY) < f(z) + f(y) for all
x,y € [0,1]. Prove that the set of zeroes of f is dense in [0, 1].

Solution. Since the dyadic rationals (numbers of the form % 57,1 € N, k € Z) are dense in R, it suffices to show
that f(r) = 0 for any dyadic rational r € [0,1]. For any = € [0,1] we have f(z ) (z+m) < flx) + f(x),
so f(z) > 0. Now, if for some z,y € [0,1] we have f(x) = f(y) = 0, then f( ) < f(z) + f(y) =0, so
f(“'y) = 0. Thus, f(0) = f(1) = 0 implies that f(3) =0, then f(1) =0and f(2) = 0, and by induction
on n, f(2n) =0 for all n € N and all integer k with 0 < k < 27™.

3. Prove that for any x € R, sin(cosz) < cos(sin z).

Solution. By periodicity of sin and cos, it suffices to prove the inequality for « € [—m, 7] only.

For = 0 we have sin(cos0) =sinl < 1 = cos(sin 0).

For any y > 0, siny < y; so, for any « € (0,7/2), since cosz > 0, we have sin(cos ) < cosz. Also, for any
x € (0,7/2),0 < sinz < x < /2 and cos is a strictly decreasing function on [0, 7/2], so cosx < cos(sin z).
Hence, sin(cosz) < cosz < cos(sin z).

For z € [r/2,7], =1 < cosz < 0, so sin(cosx) < 0, whereas 0 < sinx < 1, so cos(sinz) > cos1 > 0. So,
sin(cos z) < cos(sin z).

For any x € [—m, 0] we have sin(cos z) = sin(cos(—x)) < cos(sin(—x)) = cos(—sinz) = cos(sin ).

So, sin(cosz) < cos(sinz) for all z € [—7, 7).

Another solution. At z = 0, sin(cosz) =sinl < 1 = cos(sinz). Both sin(cos z) and cos(sin x) are continuous
functions, so if there exists = such that sin(cosz) > cos(sin z), then by the intermediate value theorem there
exists = such that sin(cosz) = cos(sinz). For this  we have cos(5 — cosz) = cos(sinz), so § — cosz =
+sinz + 2nw for some n € Z, so cosx + sinx = I — 2nw for some n € Z. But for any n € Z and for all

2
r eR,
s T .
)5 —2n7r‘ > ) >2 > | cos z + sin x|,

contradiction.



4. Given a triangle ANABC, find the set of points P inside this triangle such that area(ANAPC) =
2area(AAPB).
A

Solution. Let P be a point inside AABC, and let D be the point of
intersection of the line (AP) with the side BC' of the triangle; we will
prove that area(AAPC)/area(AAPB) = |CD|/|BD|. Let M and N
be the feet of the perpendiculars dropped from the vertices B and C A\
to (AP). We have area(AAPC) = |AP| - |CN| and area(AAPB) =
|AP| - |BM|, so area(ANAPC)/area(AAPB) = |CN|/|BM|. But the
triangles ACND and ABM D are similar (since their sides are parallel), A
so |[CN|/|BM| = |CD|/|BD|.

Hence, area( AAPC) = 2area(AAPB) iff |CD| = 2|BD|. But there
exists only one such point D on the side BC'; hence, the points P satis-

fying the condition form the interval AD, where D is the point on the
side BC for which |CD| = 2|BD|. C

D B

5. FEvery point of the plane is colored one of three colors, red, blue, or green. Prove that for any x > 0 there
are points P and Q in the plane having the same color and such that d(P, Q) = x, where d(P, Q) denotes the
distance between P and Q.

Solution. Assume that for some =z > 0 there are no points P, @ of

the same color with d(P, Q) = x. Take any point O in the plane; wlog,

assume that it is red. Then all points on the circle C of radius = centered

at O are either blue or green. Take any point P on C; wlog, let P be

blue. Then the point @ on C with d(P,Q) = = must be green. Hence, R

the point R outside of C with d(R, P) = d(R,Q) = z is red. When P

runs the circle C, the corresponding point R runs the circle S of radius (
V/3x centered at O; so, all points of S are red. However, there are points

on S with distance x between them, contradiction.

6. Find alln € N such that p = [%ZJ s prime.

Solution. We will show that n = 3 (for which p = 3) and n = 4 (for which p = 5) are the only solutions.
First, note that n = 1 and n = 2 don’t fit.
For n > 3 we have 3 possibilities: n = 3k, n = 3k + 1, and n = 3k + 2 for some k € N.
If n = 3k, then p = L%J = 3k2, is divisible by k, and is prime only if k = 1.
Ifn=3k+1, then p= L%J = 3k? + 2k, is divisible by k, and is prime only if k& = 1.
If n =3k + 2, then p = LMJ =3k +4k +1 = (3k + 1)(k + 1), and is not prime for any k.
Hence, n = 3 and n = 4 are the only solutions.



