Solutions to 2012 Rasor-Bareis Prize examination problems

1. Let $n \in \mathbb{N}$ and $a \in \mathbb{R}$. Solve, in real numbers, the system of equations

$$
\left\{\begin{array}{l}
x_{1}+\ldots+x_{n}=a \tag{1}\\
x_{1}^{2}+\ldots+x_{n}^{2}=a^{2} \\
x_{1}^{3}+\ldots+x_{n}^{3}=a^{3} \\
\vdots \\
\\
\vdots \\
x_{1}^{n}+\ldots+x_{n}^{n}=a^{n}
\end{array}\right.
$$

Solution. We will show that the only solutions of the system are $(a, 0,0, \ldots, 0,0),(0, a, 0, \ldots, 0,0), \ldots$, $(0,0,0, \ldots, 0, a)$. If $n=1$, we have only one equation $x_{1}=a$. If $n=2$, we have the system $\left\{\begin{array}{l}x_{1}+x_{2}=a \\ x_{1}^{2}+x_{2}^{2}=a^{2},\end{array}\right.$ from which $2 x_{1} x_{2}=\left(x_{1}+x_{2}\right)^{2}-\left(x_{1}^{2}+x_{2}^{2}\right)=a^{2}-a^{2}=0$, so either $x_{1}=0, x_{2}=a$, or $x_{2}=0, x_{1}=a$.

Let $n \geq 3$. From equation (2), either $x_{i}^{2}=a^{2}$ for some i and $x_{j}=0$ for all $j \neq i$, or $\left|x_{i}\right|<|a|$ for all i. But if $\left|x_{i}\right|<|a|$ for all i, then

$$
\left|x_{1}^{3}+\ldots+x_{n}^{3}\right| \leq x_{1}^{2}\left|x_{1}\right|+\ldots+x_{n}^{2}\left|x_{n}\right|<\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)|a|=|a|^{3}
$$

which contradicts equation (3). Thus, the first possibility may only take place, that is, $x_{i}^{2}=a^{2}$ for some i and $x_{j}=0$ for all $j \neq i$. And from equation (1), $x_{i}=a$.
2. Let f be a real-valued function on $[0,1]$ such that $f(0)=f(1)=0$ and $f\left(\frac{x+y}{2}\right) \leq f(x)+f(y)$ for all $x, y \in[0,1]$. Prove that the set of zeroes of f is dense in $[0,1]$.
 that $f(r)=0$ for any dyadic rational $r \in[0,1]$. For any $x \in[0,1]$ we have $f(x)=f\left(\frac{x+x}{2}\right) \leq f(x)+f(x)$, so $f(x) \geq 0$. Now, if for some $x, y \in[0,1]$ we have $f(x)=f(y)=0$, then $f\left(\frac{x+y}{2}\right) \leq f(x)+f(y)=0$, so $f\left(\frac{x+y}{2}\right)=0$. Thus, $f(0)=f(1)=0$ implies that $f\left(\frac{1}{2}\right)=0$, then $f\left(\frac{1}{4}\right)=0$ and $f\left(\frac{3}{4}\right)=0$, and by induction on $n, f\left(\frac{k}{2^{n}}\right)=0$ for all $n \in \mathbb{N}$ and all integer k with $0 \leq k \leq 2^{n}$.
3. Prove that for any $x \in \mathbb{R}, \sin (\cos x)<\cos (\sin x)$.

Solution. By periodicity of \sin and \cos, it suffices to prove the inequality for $x \in[-\pi, \pi]$ only.
For $x=0$ we have $\sin (\cos 0)=\sin 1<1=\cos (\sin 0)$.
For any $y>0, \sin y<y$; so, for any $x \in(0, \pi / 2)$, since $\cos x>0$, we have $\sin (\cos x)<\cos x$. Also, for any $x \in(0, \pi / 2), 0<\sin x<x<\pi / 2$ and \cos is a strictly decreasing function on $[0, \pi / 2]$, so $\cos x<\cos (\sin x)$. Hence, $\sin (\cos x)<\cos x<\cos (\sin x)$.

For $x \in[\pi / 2, \pi],-1 \leq \cos x \leq 0$, so $\sin (\cos x) \leq 0$, whereas $0 \leq \sin x \leq 1$, so $\cos (\sin x) \geq \cos 1>0$. So, $\sin (\cos x)<\cos (\sin x)$.

For any $x \in[-\pi, 0]$ we have $\sin (\cos x)=\sin (\cos (-x))<\cos (\sin (-x))=\cos (-\sin x)=\cos (\sin x)$.
So, $\sin (\cos x)<\cos (\sin x)$ for all $x \in[-\pi, \pi]$.
Another solution. At $x=0, \sin (\cos x)=\sin 1<1=\cos (\sin x)$. Both $\sin (\cos x)$ and $\cos (\sin x)$ are continuous functions, so if there exists x such that $\sin (\cos x) \geq \cos (\sin x)$, then by the intermediate value theorem there exists x such that $\sin (\cos x)=\cos (\sin x)$. For this x we have $\cos \left(\frac{\pi}{2}-\cos x\right)=\cos (\sin x)$, so $\frac{\pi}{2}-\cos x=$ $\pm \sin x+2 n \pi$ for some $n \in \mathbb{Z}$, so $\cos x \pm \sin x=\frac{\pi}{2}-2 n \pi$ for some $n \in \mathbb{Z}$. But for any $n \in \mathbb{Z}$ and for all $x \in \mathbb{R}$,

$$
\left|\frac{\pi}{2}-2 n \pi\right| \geq \frac{\pi}{2}>\sqrt{2} \geq|\cos x \pm \sin x|
$$

contradiction.
4. Given a triangle $\triangle A B C$, find the set of points P inside this triangle such that area $(\triangle A P C)=$ 2 area $(\triangle A P B)$.

Solution. Let P be a point inside $\triangle A B C$, and let D be the point of intersection of the line $(A P)$ with the side $B C$ of the triangle; we will prove that area $(\triangle A P C) / \operatorname{area}(\triangle A P B)=|C D| /|B D|$. Let M and N be the feet of the perpendiculars dropped from the vertices B and C to $(A P)$. We have area $(\triangle A P C)=|A P| \cdot|C N|$ and area $(\triangle A P B)=$ $|A P| \cdot|B M|$, so area $(\triangle A P C) / \operatorname{area}(\triangle A P B)=|C N| /|B M|$. But the triangles $\triangle C N D$ and $\triangle B M D$ are similar (since their sides are parallel), so $|C N| /|B M|=|C D| /|B D|$.

Hence, area $(\triangle A P C)=2$ area $(\triangle A P B)$ iff $|C D|=2|B D|$. But there exists only one such point D on the side $B C$; hence, the points P satisfying the condition form the interval $A D$, where D is the point on the side $B C$ for which $|C D|=2|B D|$.

5. Every point of the plane is colored one of three colors, red, blue, or green. Prove that for any $x>0$ there are points P and Q in the plane having the same color and such that $d(P, Q)=x$, where $d(P, Q)$ denotes the distance between P and Q.

Solution. Assume that for some $x>0$ there are no points P, Q of the same color with $d(P, Q)=x$. Take any point O in the plane; wlog, assume that it is red. Then all points on the circle C of radius x centered at O are either blue or green. Take any point P on C; wlog, let P be blue. Then the point Q on C with $d(P, Q)=x$ must be green. Hence, the point R outside of C with $d(R, P)=d(R, Q)=x$ is red. When P runs the circle C, the corresponding point R runs the circle S of radius $\sqrt{3} x$ centered at O; so, all points of S are red. However, there are points on S with distance x between them, contradiction.

6. Find all $n \in \mathbb{N}$ such that $p=\left\lfloor\frac{n^{2}}{3}\right\rfloor$ is prime.

Solution. We will show that $n=3$ (for which $p=3$) and $n=4$ (for which $p=5$) are the only solutions.
First, note that $n=1$ and $n=2$ don't fit.
For $n \geq 3$ we have 3 possibilities: $n=3 k, n=3 k+1$, and $n=3 k+2$ for some $k \in \mathbb{N}$.
If $n=3 k$, then $p=\left\lfloor\frac{9 k^{2}}{3}\right\rfloor=3 k^{2}$, is divisible by k, and is prime only if $k=1$.
If $n=3 k+1$, then $p=\left\lfloor\frac{9 k^{2}+6 k+1}{3}\right\rfloor=3 k^{2}+2 k$, is divisible by k, and is prime only if $k=1$.
If $n=3 k+2$, then $p=\left\lfloor\frac{9 k^{2}+12 k+4}{3}\right\rfloor=3 k^{2}+4 k+1=(3 k+1)(k+1)$, and is not prime for any k.
Hence, $n=3$ and $n=4$ are the only solutions.

