2014 Rasor-Bareis problem solutions

1. Prove that there does not exist a prime integer of the form 1001001... 1001.

Solution. The number 1001001... 1001 having n digits " 1 " is

$$
1+1000+\ldots+1000^{n-1}=\frac{1000^{n}-1}{1000-1}=\frac{\left(10^{n}-1\right)\left(100^{n}+10^{n}+1\right)}{999} .
$$

This number can be prime only if one of the factors in the numerator is canceled by the denominator, which is only possible if the smaller of them, $10^{n}-1$, does not exceed 999 , that is, if $n \leq 3$. However, the integers 1, 1001, and 1001001 are not prime. (1001 is divisible by 7 , and 1001001 is divisible by 3.)
2. Suppose $|A B|=r$, the radius of the circle. If $\angle O A B=\alpha$, find $\angle D O C$.

Solution. The triangle $\triangle A B O$ is isosceles, thus $\angle B O A=$ $\angle B A O=\alpha$. The angle $C B O$ is an exterior angle of the triangle $\triangle A B O$, so $\angle C B O=\angle B A O+\angle B O A=2 \alpha$. The triangle $\triangle B O C$ is also isosceles, so $\angle B C O=\angle C B O=2 \alpha$. Next, $\angle B O C=\pi-(\angle B C O+\angle C B O)=\pi-4 \alpha$. Finally, $\angle D O C=\pi-(\angle B O A+\angle B O C)=\pi-(\alpha+\pi-4 \alpha)=3 \alpha$.

3. Let a, b, and c be the lengths of the three sides of a triangle. Prove that

$$
\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c} \geq 3 .
$$

Solution. Put $x=b+c-a, y=a+c-b$, and $z=a+b-c$; by the triangle inequality, $x, y, z>0$. We have $a=(y+z) / 2, b=(x+z) / 2$, and $c=(x+y) / 2$, so

$$
\begin{aligned}
\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c} & =\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right) \\
= & \frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right) \geq 1+1+1=3,
\end{aligned}
$$

by the arithmetic-geometric mean inequality.
4. A cell is removed from a $2^{n} \times 2^{n}$ chessboard. Prove that the remaining part of the board can be tiled by L-shapes.
$\underline{\text { Solution. For } n=1 \text { the statement is obvious. Subdivide the board }}$ into four equal "sub-boards" $B_{1}, B_{2}, B_{3}, B_{4}$ of size $2^{n-1} \times 2^{n-1}$, as on the picture. Assume, w.l.o.g., that the cell was removed from the sub-board B_{1}, and remove the cells of the sub-boards B_{2}, B_{3} and B_{4} covered by an L-shape at the center of the board, as on the picture. Now exactly one square is removed from each subboard. By induction on n, the remaining parts of the sub-boards
 $B_{1}, B_{2}, B_{3}, B_{4}$ can now be tiled by L-shapes.
5. For any seven real numbers y_{1}, \ldots, y_{7} prove that there are two of them, y_{i} and y_{j} with $i \neq j$, satisfying $\left|\frac{y_{i}-y_{j}}{1+y_{i} y_{j}}\right|<\frac{1}{\sqrt{3}}$.
 j we have $0<x_{i}-x_{j}<\pi / 6$. Since tan is a strictly increasing function, we then have

$$
0<\frac{y_{i}-y_{j}}{1+y_{i} y_{j}}=\frac{\tan x_{i}-\tan x_{j}}{1+\tan x_{i} \tan x_{j}}=\tan \left(x_{i}-x_{j}\right)<\tan (\pi / 6)=\frac{1}{\sqrt{3}}
$$

6. A rectangular pool table $A C D F$ has size 2024×1111. This table has six pockets located at the corners and at the midpoints of the longer sides, as indicated by A, B, C, D, E, F in the figure. A ball is hit from corner A at a 45° angle, and bounces off the edges until it falls into one of the pockets. Which pocket will it end in?

Answer. The pocket B.
Solution. As often in billiards problems, instead of reflecting the trajectory of the ball at the points it reaches the sides of the table, let us reflect the table, keeping the trajectory to be a straight line, the line $l=\{(x, y): y=x\}$. We obtain a lattice of points - of "pockets" - in the plane, marked by letters A, B, C, D, E, F as on the picture, with coordinates $(n|A B|, k|A C|)$ with $n, k \in \mathbb{Z}$, and now the question is what is the mark of the first point P of the lattice located on l.
(The line l intersects "the sides of the table" - the horizontal and vertical lines on the picture - at points with integer coordinates, so either the ball arrives at the center of a pocket, or hits a side of the table at a distance at least 1 from the nearest pocket.) The first pocket P on l is at the point (m, m), where m is the least common multiple of $|A B|$ and $|C D|$. We have $|A B|=1012=2^{2} \cdot 11 \cdot 23=11 \cdot 92$ and $|A F|=$ $1111=11 \cdot 101$, so $m=101|A B|=92|A F|$, and P has coordinates $(101|A B|, 92|A F|)$. In the "horizontal" sequence $(A) B C B A B C B A \ldots$, the 101st letter is B, and in the "vertical" sequence $(B) E B E B E B E \ldots$, the 92 nd letter is B. So, P is marked by " B ".

