2017 Rasor-Bareis exam solutions

1. Let $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, \ldots$ be the Fibonacci numbers. Show that F_{n} divides $F_{2 n}$ for all $n \in \mathbb{N}$.
Solution. Let $n \in \mathbb{N}$. We have $F_{n+2}=F_{n}+F_{n+1}$, and iterating this formula we get $F_{n+3}=F_{n+2}+F_{n+1}=$ $F_{n}+2 F_{n+1}, F_{n+4}=F_{n+3}+F_{n+2}=2 F_{n}+3 F_{n+1}, \ldots$ We see that the coefficients in these identities form the Fibonacci sequence themselves, so we obtain the nice identity

$$
F_{n+k}=F_{k-1} F_{n}+F_{k} F_{n+1} \text { for all } k
$$

Indeed, by induction, if this identity is true for some k and $k+1$, then for $k+2$ we also have

$$
F_{n+k+2}=F_{n+k+1}+F_{n+k}=F_{k} F_{n}+F_{k+1} F_{n+1}+F_{k-1} F_{n}+F_{k} F_{n+1}=F_{k+1} F_{n}+F_{k+2} F_{n+1}
$$

In particular, we have $F_{2 n}=F_{n-1} F_{n}+F_{n} F_{n+1}$, and is divisible by F_{n}.
Another solution. The origin of the formulas in the first solution becomes clearer if we use a matrix representation of Fibonacci numbers. For any n, the vector $\binom{F_{n}}{F_{n+1}}$ is obtained from the vector $\binom{F_{n-1}}{F_{n}}$ by the formula $\binom{F_{n}}{F_{n+1}}=\binom{F_{n}}{F_{n-1}+F_{n}}=A\binom{F_{n-1}}{F_{n}}$, where A is the matrix $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array} 1\right)$. Thus, for any $n \in \mathbb{N}$, $\binom{F_{n-1}}{F_{n}}=A^{n-1}\binom{F_{0}}{F_{1}}=A^{n-1}\binom{0}{1}$ and $\binom{F_{n}}{F_{n+1}}=A^{n}\binom{F_{1}}{F_{2}}=A^{n-1}\binom{1}{1}$, so $A^{n}=\left(\begin{array}{cc}F_{n-1} & F_{n} \\ F_{n} & F_{n+1}\end{array}\right)$. Thus for any $n, k \in \mathbb{N}$,

$$
A^{n+k}=\left(\begin{array}{cc}
F_{n+k-1} & F_{n+k} \\
F_{n+k} & F_{n+k+1}
\end{array}\right)=A^{n} A^{k}=\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right)\left(\begin{array}{cc}
F_{k-1} & F_{k} \\
F_{k} & F_{k+1}
\end{array}\right) .
$$

In particular, $F_{n+k}=F_{n} F_{k-1}+F_{n+1} F_{k}$.
2. Let $A B C D$ be a parallelogram, and let P, Q, R, S be the centers of the squares constructed on its sides. Prove that $P Q R S$ is also a square.

Solution. The triangles $R D S$ and $R C Q$ are coungruent: $|R D|=$ $|R C|,|D S|=|C Q|$, and $\angle R D S=\angle R C Q$. Hence, $|R S|=|R Q|$ and $\angle D R S=\angle C R Q$. Since $\angle D R C=90^{\circ}$, we obtain that $\angle S R Q=90^{\circ}$ as well. Similarly, $|R Q|=|Q P|=|P S|$ and $\angle R Q P=\angle Q P S=\angle P S R=90^{\circ}$.

3. Prove that for each positive integer n there is a polynomial p_{n} of degree n with integer coefficients such that $2 \cos (n x)=p_{n}(2 \cos x)$ for all x.
Solution. We'll use induction on n; the case $n=1$ is trivial. For any integer n we have

$$
\cos ((n+1) x)+\cos ((n-1) x)=2 \cos (n x) \cos x
$$

So

$$
\cos ((n+1) x)=2 \cos (n x) \cos x-\cos ((n-1) x)
$$

If by the induction hypothesis $2 \cos (n x)=p_{n}(2 \cos x)$ and $2 \cos ((n-1) x)=p_{n-1}(2 \cos x)$, where p_{n-1} and p_{n} are polynomials of degree $n-1$ and n respectively with integer coefficients, we obtain that

$$
2 \cos ((n+1) x)=p_{n}(2 \cos x) \cdot 2 \cos x-p_{n-1}(2 \cos x)=p_{n+1}(2 \cos x)
$$

where $p_{n+1}(y)=p_{n}(y) y-p_{n-1}(y)$ is a polynomial of degree $n+1$ with integer coefficients.
Remark. The polynomials p_{n} are related to the so-called Chebyshev's polynomials $T_{n}(y)=\cos (n \arccos y)$, $n \in \mathbb{N}$, namely, $p_{n}(y)=2 T_{n}(y / 2)$.
4. Prove that there is an integer of the form $111 \ldots 111$ divisible by 2017.

Solution. Consider the sequence $u_{1}=1, u_{2}=11, u_{3}=111, \ldots$ There are two distinct elements of this sequence, u_{n} and u_{m} with $m>n$, having the same remainder modulo 2017. The difference $u_{m}-u_{n}=$ $11 \ldots 100 \cdot 0=u_{m-n} \cdot 10^{n}$ is divisible by 2017. The integers 10^{n} and 2017 are relatively prime (2017 is not divisible by 2 and 5; actually, 2017 is prime), so 2017 divides u_{m-n}.
Another solution. Since 2017 is prime, by the little Fermat's theorem, $10^{2016}=1 \bmod 2017$, so $\underbrace{}_{\underbrace{999 \ldots 99}=}=$ $10^{2016}-1$ is divisible by 2017 , so $\underbrace{111 \ldots 111}_{2016}$ is divisible by 2017 .
5. If a set of integers is distributed around a circle, a legal move is to interchange some two neighboring integers m and n provided $|m-n| \geq 3$. Suppose that the integers $1,2, \ldots, 2017$ are positioned in order clockwise around the circle. Is there a sequence of legal moves that reverses the order, so that after those moves are made the integers $1,2, \ldots, 2017$ are positioned in order counterclockwise around the circle?
Solution. No. Since the integers $1,2,3$ cannot be interchanged with each other by any legal move, after any sequence of legal moves their order clockwisely remains $1,2,3$ and never becomes $3,2,1$.
6. Evaluate $I=\int_{2}^{6} \frac{(10-x)^{2017}}{(10-x)^{2017}+(2+x)^{2017}} d x$.

Solution. After the substitution $y=8-x$, we have that $I=\int_{2}^{6} \frac{(2+y)^{2017}}{(2+y)^{2017}+(10-y)^{2017}} d y$. Thus
$2 I=I+I=\int_{2}^{6} \frac{(10-x)^{2017}}{(10-x)^{2017}+(2+x)^{2017}} d x+\int_{2}^{6} \frac{(2+x)^{2017}}{(2+x)^{2017}+(10-x)^{2017}} d x$

$$
=\int_{2}^{6} \frac{(10-x)^{2017}+(2+x)^{2017}}{(2+x)^{2017}+(10-x)^{2017}} d x=\int_{2}^{6} 1 d x=4
$$

So, $I=2$.

