2018 Rasor-Bareis exam solutions

1. Prove that the decimal integer of the form 20182018 ... 201820182019 cannot be a perfect square.

Solution. If $n \in \mathbb{Z}$ is even, then n^{2} is divisible by 4 ; if n is odd, $n=2 k+1$, then $n^{2}=4 k^{2}+4 k+1$ has residue 1 modulo 4. Any integer of the form $20182018 \ldots 201820182019$ has residue 3 modulo 4 , hence it is not equal to n^{2} for any $n \in \mathbb{Z}$.
2. Prove that $\sum_{1 \leq m<n \leq 2018} \frac{1}{m n}$ is not an integer.

Solution. Among the positive integers not exceeding 2018 there are only two divisible by 3^{6}, namely, $3^{6}=729$ and $2 \cdot 3^{6}=1458$, since $3 \cdot 3^{6}=3^{7}=2187>2018$. So, except for

$$
\frac{1}{3^{6} \cdot\left(2 \cdot 3^{6}\right)}=\frac{1}{2 \cdot 3^{12}}
$$

all other summands in $S=\sum_{1 \leq m<n \leq 2018} \frac{1}{m n}$ have the form $\frac{1}{d \cdot 3^{k}}$ with $k \leq 11$ and d not divisible by 3 . After combining all these summands, S can be written in the form

$$
S=\frac{a}{b \cdot 3^{11}}+\frac{1}{2 \cdot 3^{12}}
$$

where a, b are integers and b is not divisible by 3 . Hence,

$$
S=\frac{6 a+b}{2 b \cdot 3^{12}}
$$

with the numerator $6 a+b$ being not divisible by 3 , and so, S is not an integer.
Another solution. Notice that 2017 is a prime integer. In the sum $S=\sum_{1 \leq m<n \leq 2018} \frac{1}{m n}$ isolate the fractions involving 2017 to find

$$
S=\frac{a}{b}+\sum_{m=1}^{2016} \frac{1}{m \cdot 2017}+\frac{1}{2017 \cdot 2018}
$$

where a and b are integers and b is not divisible by 2017. Multiplying this identity by 2017 and then reducing modulo 2017 we get

$$
\sum_{m=1}^{2016} m^{-1}+2018^{-1}=0 \bmod 2017
$$

However, modulo 2017, $2018^{-1}=1^{-1}=1$ whereas $\sum_{m=1}^{2016} m^{-1}=0$, since in this sum every residue modulo 2017 occurs and cancels with its negative.
3. Evaluate $\int_{0}^{\pi} \operatorname{arccot}(\cos x) d x$.

Solution. Let $I=\int_{0}^{\pi} \operatorname{arccot}(\cos x) d x$. Making the substitution $y=\pi-x$ we see that

$$
I=\int_{0}^{\pi} \operatorname{arccot}(-\cos y) d y=\int_{0}^{\pi}(\pi-\operatorname{arccot}(\cos y)) d y=\int_{0}^{\pi} \pi d y-\int_{0}^{\pi} \operatorname{arccot}(\cos y) d y=\pi^{2}-I
$$

So, $I=\pi^{2} / 2$.
4. Prove that the perpendicular bisector of the line joining the feet of two altitudes of a triangle bisects the third side of the triangle.
Solution. Let $A P$ and $C Q$ be the altitudes of a triangle $A B C$. Since $\angle A P C=\angle C Q A=90^{\circ}$, the points P and Q lie on the circle S built on the diameter $A C$. The perpendicular bisector to the chord $P Q$ of S passes through the center of S, which is the middle point of $A C$.

5. Let $0<\alpha, \beta<\pi / 2$ and assume that $\sin ^{2} \alpha+\sin ^{2} \beta=\sin (\alpha+\beta)$. Prove that $\alpha+\beta=\pi / 2$.

Solution. Assume that $\alpha+\beta<\frac{\pi}{2}$. Then $\alpha<\frac{\pi}{2}-\beta$, and $\operatorname{since} \sin$ is increasing on the interval $\left[0, \frac{\pi}{2}\right]$,

$$
\sin \alpha<\sin \left(\frac{\pi}{2}-\beta\right)=\cos \beta
$$

Similarly, $\sin \beta<\cos \alpha$. Thus,

$$
\sin ^{2} \alpha+\sin ^{2} \beta<\sin \alpha \cos \beta+\sin \beta \cos \alpha=\sin (\alpha+\beta)
$$

Now assume that $\alpha+\beta>\frac{\pi}{2}$. Then $\alpha>\frac{\pi}{2}-\beta$, so

$$
\sin \alpha>\sin \left(\frac{\pi}{2}-\beta\right)=\cos \beta
$$

and similarly, $\sin \beta>\cos \alpha$. Thus,

$$
\sin ^{2} \alpha+\sin ^{2} \beta>\sin \alpha \cos \beta+\sin \beta \cos \alpha=\sin (\alpha+\beta)
$$

Hence, if $\sin ^{2} \alpha+\sin ^{2} \beta=\sin (\alpha+\beta)$, then it must be that $\alpha+\beta=\pi / 2$.
6. Prove that for any positive integer $n,(2 n+1)^{n} \geq(2 n)^{n}+(2 n-1)^{n}$.

Solution. The inequality under question is equivalent to

$$
\left(1+\frac{1}{2 n}\right)^{n} \geq 1+\left(1-\frac{1}{2 n}\right)^{n}
$$

and so, to

$$
\left(1+\frac{1}{2 n}\right)^{n}-\left(1-\frac{1}{2 n}\right)^{n} \geq 1
$$

And indeed, applying the binomial formula, we obtain

$$
\begin{aligned}
\left(1+\frac{1}{2 n}\right)^{n}-\left(1-\frac{1}{2 n}\right)^{n} & =1+\binom{n}{1}\left(\frac{1}{2 n}\right)+\binom{n}{2}\left(\frac{1}{2 n}\right)^{2}+\binom{n}{3}\left(\frac{1}{2 n}\right)^{3}+\cdots+\binom{n}{n}\left(\frac{1}{2 n}\right)^{n} \\
& -1+\binom{n}{1}\left(\frac{1}{2 n}\right)-\binom{n}{2}\left(\frac{1}{2 n}\right)^{2}+\binom{n}{3}\left(\frac{1}{2 n}\right)^{3}-\cdots \pm\binom{ n}{n}\left(\frac{1}{2 n}\right)^{n} \\
& =2 n \frac{1}{2 n}+2\binom{n}{3}\left(\frac{1}{2 n}\right)^{3}+\cdots \geq 1
\end{aligned}
$$

