2018 Rasor-Bareis exam solutions

1. **Prove that the decimal integer of the form 20182018⋯201820182019 cannot be a perfect square.**

 Solution. If \(n \in \mathbb{Z} \) is even, then \(n^2 \) is divisible by 4; if \(n \) is odd, \(n = 2k + 1 \), then \(n^2 = 4k^2 + 4k + 1 \) has residue 1 modulo 4. Any integer of the form 20182018⋯201820182019 has residue 3 modulo 4, hence it is not equal to \(n^2 \) for any \(n \in \mathbb{Z} \).

2. **Prove that** \(\sum_{1 \leq m < n \leq 2018} \frac{1}{mn} \) is not an integer.

 Solution. Among the positive integers not exceeding 2018 there are only two divisible by 3, namely, \(3^6 = 729 \) and \(2 \cdot 3^6 = 1458 \), since \(3 \cdot 3^6 = 3^7 = 2187 > 2018 \). So, except for \(\frac{1}{3^6 \cdot (2 \cdot 3^6)} = \frac{1}{2 \cdot 3^{12}} \)

 all other summands in \(S = \sum_{1 \leq m < n \leq 2018} \frac{1}{mn} \) have the form \(\frac{1}{d \cdot 3^k} \) with \(k \leq 11 \) and \(d \) not divisible by 3. After combining all these summands, \(S \) can be written in the form

 \[
 S = \frac{a}{b \cdot 3^{11}} + \frac{1}{2 \cdot 3^{12}}
 \]

 where \(a, b \) are integers and \(b \) is not divisible by 3. Hence,

 \[
 S = \frac{6a + b}{2b \cdot 3^{12}},
 \]

 with the numerator \(6a + b \) being not divisible by 3, and so, \(S \) is not an integer.

 Another solution. Notice that 2017 is a prime integer. In the sum \(S = \sum_{1 \leq m < n \leq 2018} \frac{1}{mn} \) isolate the fractions involving 2017 to find

 \[
 S = \frac{a}{b} + \sum_{m=1}^{2016} \frac{1}{m \cdot 2017} + \frac{1}{2017 \cdot 2018},
 \]

 where \(a \) and \(b \) are integers and \(b \) is not divisible by 2017. Multiplying this identity by 2017 and then reducing modulo 2017 we get

 \[
 \sum_{m=1}^{2016} m^{-1} + 2018^{-1} = 0 \mod 2017.
 \]

 However, modulo 2017, \(2018^{-1} = 1^{-1} = 1 \) whereas \(\sum_{m=1}^{2016} m^{-1} = 0 \), since in this sum every residue modulo 2017 occurs and cancels with its negative.

3. **Evaluate** \(\int_0^\pi \arccot(\cos x) \, dx \).

 Solution. Let \(I = \int_0^\pi \arccot(\cos x) \, dx \). Making the substitution \(y = \pi - x \) we see that

 \[
 I = \int_0^\pi \arccot(-\cos y) \, dy = \int_0^\pi (\pi - \arccot(\cos y)) \, dy = \int_0^\pi \pi \, dy - \int_0^\pi \arccot(\cos y) \, dy = \pi^2 - I.
 \]

 So, \(I = \pi^2/2 \).
4. Prove that the perpendicular bisector of the line joining the feet of two altitudes of a triangle bisects the third side of the triangle.

Solution. Let \(AP \) and \(CQ \) be the altitudes of a triangle \(ABC \). Since \(\angle APC = \angle CQA = 90^\circ \), the points \(P \) and \(Q \) lie on the circle \(S \) built on the diameter \(AC \). The perpendicular bisector to the chord \(PQ \) of \(S \) passes through the center of \(S \), which is the middle point of \(AC \).

5. Let \(0 < \alpha, \beta < \pi/2 \) and assume that \(\sin^2 \alpha + \sin^2 \beta = \sin(\alpha + \beta) \). Prove that \(\alpha + \beta = \pi/2 \).

Solution. Assume that \(\alpha + \beta < \pi/2 \). Then \(\alpha < \pi/2 - \beta \), and since \(\sin \) is increasing on the interval \([0, \pi/2] \),

\[
\sin \alpha < \sin\left(\frac{\pi}{2} - \beta\right) = \cos \beta.
\]

Similarly, \(\sin \beta < \cos \alpha \). Thus,

\[
\sin^2 \alpha + \sin^2 \beta < \sin \alpha \cos \beta + \sin \beta \cos \alpha = \sin(\alpha + \beta).
\]

Now assume that \(\alpha + \beta > \pi/2 \). Then \(\alpha > \pi/2 - \beta \), so

\[
\sin \alpha > \sin\left(\frac{\pi}{2} - \beta\right) = \cos \beta,
\]

and similarly, \(\sin \beta > \cos \alpha \). Thus,

\[
\sin^2 \alpha + \sin^2 \beta > \sin \alpha \cos \beta + \sin \beta \cos \alpha = \sin(\alpha + \beta).
\]

Hence, if \(\sin^2 \alpha + \sin^2 \beta = \sin(\alpha + \beta) \), then it must be that \(\alpha + \beta = \pi/2 \).

6. Prove that for any positive integer \(n \), \((2n+1)^n \geq (2n)^n + (2n-1)^n \).

Solution. The inequality under question is equivalent to

\[
\left(1 + \frac{1}{2n}\right)^n \geq 1 + \left(1 - \frac{1}{2n}\right)^n,
\]

and so, to

\[
\left(1 + \frac{1}{2n}\right)^n - \left(1 - \frac{1}{2n}\right)^n \geq 1.
\]

And indeed, applying the binomial formula, we obtain

\[
\left(1 + \frac{1}{2n}\right)^n - \left(1 - \frac{1}{2n}\right)^n = 1 + \binom{n}{1}\left(\frac{1}{2n}\right) + \binom{n}{2}\left(\frac{1}{2n}\right)^2 + \binom{n}{3}\left(\frac{1}{2n}\right)^3 + \cdots + \binom{n}{n}\left(\frac{1}{2n}\right)^n
-1 + \binom{n}{1}\left(\frac{1}{2n}\right) - \binom{n}{2}\left(\frac{1}{2n}\right)^2 + \binom{n}{3}\left(\frac{1}{2n}\right)^3 - \cdots \pm \binom{n}{n}\left(\frac{1}{2n}\right)^n
= 2n\frac{1}{2n} + 2\binom{n}{3}\left(\frac{1}{2n}\right)^3 + \cdots \geq 1.
\]