## 2019 Rasor-Bareis exam solutions

1. Let $F_{0}=1, F_{1}=1, F_{2}=2, F_{3}=3, \ldots$, be the Fibonacci sequence. Prove that for every $n \in \mathbb{N}$, $\frac{1}{F_{1} F_{3}}+\frac{1}{F_{2} F_{4}}+\cdots+\frac{1}{F_{n} F_{n+2}}<1$.
Solution. For every $k$ we have

$$
\frac{1}{F_{k} F_{k+1}}-\frac{1}{F_{k+1} F_{k+2}}=\frac{F_{k+2}-F_{k}}{F_{k} F_{k+1} F_{k+2}}=\frac{F_{k+1}}{F_{k} F_{k+1} F_{k+2}}=\frac{1}{F_{k} F_{k+2}}
$$

Using this identity, we transform our sum into a telescoping one:

$$
\begin{aligned}
\frac{1}{F_{1} F_{3}}+\frac{1}{F_{2} F_{4}}+\cdots+\frac{1}{F_{n} F_{n+2}}=\frac{1}{F_{1} F_{2}}-\frac{1}{F_{2} F_{3}}+\frac{1}{F_{2} F_{3}}-\frac{1}{F_{3} F_{4}} & +\cdots+\frac{1}{F_{n} F_{n+1}}-\frac{1}{F_{n+1} F_{n+2}} \\
& =\frac{1}{F_{1} F_{2}}-\frac{1}{F_{n+1} F_{n+2}}=1-\frac{1}{F_{n+1} F_{n+2}}<1
\end{aligned}
$$

2. Suppose rational numbers $a$ and $b$ are such that the numbers $\sqrt[3]{a}+\sqrt[3]{b}$ and $\sqrt[3]{a b}$ are also rational. Prove that $\sqrt[3]{a}$ and $\sqrt[3]{b}$ are rational as well.
Solution. Let $A=\sqrt[3]{a}$ and $B=\sqrt[3]{b}$; we are given that $A^{3}, B^{3}, A+B, A B \in \mathbb{Q}$ and need to show that $A, B \in \mathbb{Q}$. We have

$$
A^{2}+A B+B^{2}=(A+B)^{2}-A B \in \mathbb{Q}
$$

so

$$
A-B=\left(A^{3}-B^{3}\right) /\left(A^{2}+A B+B^{2}\right) \in \mathbb{Q}
$$

so $A=(A+B) / 2+(A-B) / 2 \in \mathbb{Q}$ and $B=(A+B)-A \in \mathbb{Q}$.
3. The integer points $(n, m), n, m \in \mathbb{Z}$, of the plane $\mathbb{R}^{2}$ are colored with five colors so that every configuration of the form

$$
\{(n, m),(n-1, m),(n+1, m),(n, m-1),(n, m+1)\}, n, m \in \mathbb{Z}
$$

contains all five colors. Prove that every length 5 row

$$
\{(n, m),(n+1, m),(n+2, m),(n+3, m),(n+4, m)\}, n, m \in \mathbb{Z}
$$

and every length 5 column

$$
\{(n, m),(n, m+1),(n, m+2),(n, m+3),(n, m+4)\}, n . m \in \mathbb{Z}
$$

also contain all five colors.
Solution. It suffices to prove this assertion for rows only. By the way of contradiction, assume that a row

$$
\{(n, m),(n+1, m),(n+2, m),(n+3, m),(n+4, m)\}
$$

does not contain points of one of our five colors, say, red.
Then in each of the configurations


$$
\{(k-1, m),(k, m),(k+1, m),(k, m+1),(k, m-1)\}
$$

with $k=n+1, n+2, n+3$, at least one of the points $(k, m+1)$ and $(k, m-1)$ must be red. W.l.o.g. assume that in two of these three configurations the red point is $(k, m+1)$; then the configuration

$$
\{(n+1, m+1),(n+2, m+1),(n+3, m+1),(n+2, m+2),(n+2, m)\}
$$

contains two red points, which contradicts the assumption.
4. Evaluate $\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{2019} x}$.

Solution. Let $I=\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{2019} x}$. Since $\tan (\pi / 2-x)=\cot x$, we also have

$$
I=\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{2019}(\pi / 2-x)}=\int_{0}^{\pi / 2} \frac{d x}{1+\cot ^{2019} x}=\int_{0}^{\pi / 2} \frac{\tan ^{2019} x}{\tan ^{2019} x+1} d x
$$

and so,

$$
2 I=\int_{0}^{\pi / 2} \frac{1}{1+\tan ^{2019} x} d x+\int_{0}^{\pi / 2} \frac{\tan ^{2019} x}{1+\tan ^{2019} x} d x=\int_{0}^{\pi / 2} 1 d x=\pi / 2
$$

Hence, $I=\pi / 4$.
5. Let $A B C D$ be a parallelogram and let $P$ and $Q$ be the midpoints of $B C$ and of $D C$ respectively. Is it possible that the rays $A P$ and $A Q$ trisect the angle $\angle B A D$ ?

Solution. The answer is negative. By the way of contradiction, assume that $\angle B A P=\angle P A Q=\angle Q A D$. Let $M$ be the point of intersection of the lines $A B$ and $P Q$ and $N$ be the point of intersection of the lines $A D$ and $P Q$. The the triangles $\triangle D Q N$ and $\triangle C Q P$ are congruent, so $|N Q|=|Q P|$. Hence, in the triangle $\triangle A N P, A Q$ is simultaneously a median and an angle bisector, thus this triangle is isosceles, so $A Q$ is its height as well, that is, $A Q \perp P Q$. But, similarly, also $A P \perp P Q$, so $P=Q$, contradiction.

6. Prove that for all $n, m \in \mathbb{N}, \frac{1}{\sqrt[m]{1+n}}+\frac{1}{\sqrt[n]{1+m}} \geq 1$.

Solution. For any $n, m \in \mathbb{N},\left(1+\frac{n}{m}\right)^{m} \geq 1+m \frac{n}{m}=1+n$ (Bernoulli's inequality), so $\sqrt[m]{1+n} \leq 1+\frac{n}{m}$, and similarly, and $\sqrt[n]{1+m} \leq 1+\frac{m}{n}$. So,

$$
\frac{1}{\sqrt[m]{1+n}}+\frac{1}{\sqrt[n]{1+m}} \geq \frac{1}{1+n / m}+\frac{1}{1+m / n}=1
$$

