
2020 Rasor-Bareis exam solutions

1. Prove that 172020 cannot be represented as m3 + n3 for positive integers m and n.

Solution. The assertion follows from the fact that 172020 cannot be represented as a sum m3 +n3 modulo 7.
Indeed, by the little Fermat’s theorem, 176 ≡ 1mod 7, and since 2020 = 636 · 6 + 4,

172020 ≡ 174 mod 7 ≡ 34 mod 7 ≡ 4mod 7.

On the other hand, for any integer m, m3 mod 7 can only be equal to 0, 1, or −1 ≡ 6, and the sum of two
cubes cannot be 4 modulo 7.

Another solution. Assume that for some k ∈ N there are m,n ∈ N such that 17k = m3 + n3. Choose the
smallest k with this property; then neither m nor n are divisible by 17. Indeed, if 17 is a factor of one of
them, then it is a factor of the other, and we can cancel 173 to get an identity with a smaller k; but this
contradicts the choice of k if k ≥ 1 and is impossible if k ≤ 0.
Since m3 +n3 = (m+n)(m2 −mn+n2) and 17 is prime, the Unique Factorization theorem gives that both
m+ n and m2 −mn+ n2 are powers of 17. Then 17 divides (m+ n)2 = (m2 −mn+ n2) + 3mn, so, divides
mn, and so divides m or n, contradiction.

2. Prove that for any x, y, z ∈ [0, 1],
x

7 + y3 + z3
+

y

7 + z3 + x3
+

z

7 + x3 + y3
≤ 1

3
.

Solution. Since x3, y3, z3 ≤ 1, we have

x

7 + y3 + z3
+

y

7 + z3 + x3
+

z

7 + x3 + y3
≤ x

6 + x3 + y3 + z3
+

y

6 + x3 + y3 + z3
+

z

6 + x3 + y3 + z3

=
x+ y + z

6 + x3 + y3 + z3
.

To prove that this quotient is ≤ 1

3
, we need to show that 6 + x3 + y3 + z3 ≥ 3x+ 3y + 3z, and we are done

if we have 2 + x3 ≥ 3x for all x ∈ [0, 1]. But this is so indeed since the polynomial x3 − 3x+ 2 is decreasing
on [0, 1] and vanishes at 1.

3. Prove that

∫ π/2

0

cos(2020x)(cosx)2018 dx = 0.

Solution. For any n ∈ N, by a trigonometric formula, we have

I =

∫ π/2

0

cos
(

(n+ 2)x
)

(cosx)n dx =

∫ π/2

0

cos
(

(n+ 1)x
)

(cosx)n+1 dx−
∫ π/2

0

sin
(

(n+ 1)x
)

sinx (cosx)n dx.

Integrating the second term by parts, with u = sin
(

(n+ 1)x
)

and v = (cosx)n sinx, we get

∫ π/2

0

sin
(

(n+1)x
)

sinx (cosx)n dx = − 1

n+ 1
sin

(

(n+1)x
)

(cosx)n+1

∣

∣

∣

π/2

0

+

∫ π/2

0

(cosx)n+1 cos
(

(n+1)x
)

dx

=

∫ π/2

0

cos
(

(n+ 1)x
)

(cosx)n+1 dx.

Subtracting this from the first term, we get I = 0.

4. Find all real polynomials f(x) = x2020 + a2019x
2019 + · · ·+ a1x+ a0 all of whose roots are real, and such

that |f(i)| = 1.

Solution. Let x1, . . . , x2020 be the roots of f (listed with their multiplicities), so that f(x) =
∏2020

k=1
(x− xk).

For every k, since xk ∈ R, we have |i − xk| =
√

x2
k + 12 ≥ 1, with equality only if xk = 0. Hence,

|f(i))| =
∏2020

k=1
|i − xk| ≥ 1 with equality only if xk = 0 for all k. Hence, all roots of f are equal to 0, and

f(x) = x2020.
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5. Let ABCD be a convex quadrilateral of area 1, and let O be a point inside it. Prove that |AO|+ |BO|+
|CO|+ |DO| ≥ 2

√
2.

Solution. By the triangle inequality, |AO| + |CO| ≥ |AC| and |BO| + |DO| ≥ |BD|,
so |AO|+ |BO|+ |CO|+ |DO| ≥ |AC + |BD|. The area S of ABCD equals 1

2
|AC| ·

|BD| sin θ, where θ is the angle between AC and BD. Hence |AC| · |BD| ≥ 2S = 2.
By the AM-GM inequality, |AC|+ |BD| ≥ 2

√

|AC| · |BD| ≥ 2
√
2. b b

b
b

b

A B

CD

O

θ

Another solution. By the formula for the area of a trinagle, the sum of the areas of
the triangles AOB, BOC, COD, and DOA do not exceed 1

2
|AO| · |BO|, 1

2
|BO| · |CO|,

1

2
|CO| · |DO|, and 1

2
|DO| · |AO| respectfully. Thus,

2 ≤ |AO|·|BO|+|BO|·|CO|+|CO|·|DO|+|DO|·|AO| = (|AO|+|CO|)(|BO|+|DO|).

By the AM-GM inequality,
√

(|AO|+ |CO|)(|BO|+ |DO|) ≤ 1

2

(

(|AO| + |CO|) +
(|BO|+ |DO|)

)

, so |AO|+ |CO|+ |BO|+ |DO| ≥ 2
√
2.

b b

b
b

b

A B

CD

O

6. A 6 × 6 board is covered with eighteen 2 × 1 tiles, without gaps or overlaps. No matter how those tiles

are arranged, prove that there always is a straight line that cuts across the whole board without cutting any

tile.

Solution. Naturally, we only consider the lines of the grid subdividing the board into its
1× 1 squares; there are 10 such lines, 5 “vertical” and 5 “horizontal”, and every tile can be
cut, into halfs, by at most one of these lines. We claim that each line cuts an even (possibly,
zero) number of tiles. Indeed, let’s enumerate the vertical lines, v1, . . . , v5, in order, from
the left to the right. For each i, let ai be the number of “vertical” tiles for which vi serves
as the right edge: , bi be the number of “horizontal” tiles for which vi serves as the right v1v2v3

v4

v5

edge: , and ci be the number of (horizontal) tiles halved by vi: . Then 2ai+ bi+ ci = 10 and bi = ci−1.

Since b1 = 0, we have by induction that bi and ci are even for all i. The same applies to the horizontal lines.
It follows that if a line cuts a tile, then it cuts ≥ 2 tiles, and if every line cuts tiles then all together they
cut 10 · 2 ≥ 20 tiles; but this is impossible since there are only 18 those.
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