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These notes are largely drawn from Cahen and Chabert’s Integer-Valued Polynomials.

1 Introduction

Every integer is either even or odd, so we know that the polynomial f(x) =
x(x− 1)

2
is integer-

valued on the integers, even though its coefficients are not in Z. Similarly, since every binomial

coefficient
(
k

n

)
is an integer, the polynomial

(
x

n

)
=
x(x− 1)...(x− n+ 1)

n!
must also be integer-

valued. These polynomials were used for polynomial interpolation as far back as the 17th century.
Integer-valued polynomials did not become the subject of research on their own account until Pólya
and Ostrowski considered the integer-valued polynomials on an algebraic number field K, that is
the set Int(O) = {f(x) ∈ K[x] | f(O) ⊆ O}, where O is the ring of algebraic integers of K.
Then in 1936, Thoralf Skolem was the first author to consider Int(Z) as a ring. Since then integer-
valued polynomial rings have been the subject of much study in commutative algebra.

In this note we will consider various properties of integer-valued polynomial rings, focusing
particuarly on Int(Z). We will see how integer-valued polynomial rings intersect with topics
throughout algebra, and we will prove a few of the results along the way.

2 Notation
Throughout this note, unless otherwise speicifed, let D be an integral domain with quotient field
K, and let Int(D) be the set of integer-valued polynomials onD, that is Int(D) = {f(x) ∈ K[x] |
f(D) ⊆ D}.

3 Int(D) as a D-module
We can check without too much trouble that Int(D) is a D-module. If we restrict our attention to
Int(Z), we can find a basis for it as a Z-module.

Lemma 3.1 The polynomials
(
x

n

)
are integer-valued.

Proof f(x) =
(
x

n

)
=
x(x− 1)...(x− n+ 1)

n!
. Notice that f(k) = 0 for 0 ≤ k < n. If k ≥ n,

then f(k) ∈ N. Finally, if k < 0, then

f(k) =
k(k − 1)...(k − n+ 1)

n!
= (−1)n (n− k − 1)(n− k − 2)...(−k)

n!
= (−1)n

(
n− k − 1

n

)
∈ Z

The proof of the following proposition is due to Cahen and Chabert.
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Proposition 3.2 The polynomials
(
x

n

)
form a basis of the Z-module Int(Z).

Proof There is one polynomial of each degree, so they are a basis of the Q-module Q[x]. By

Lemma 3.1,
(
x

n

)
are integer-valued, so a Z-linear combination of them is integer-valued. Now

suppose that f ∈ Int(Z) is of degree n. Write f = α0+α1x+ ...+αn

(
x

n

)
. Then α0 = f(0) ∈ Z.

By induction, suppose that αi ∈ Z for all i < k ≤ n. Let gk = f −
∑k−1

i=0 αi

(
x

i

)
. We know that

gk = αk

(
x

k

)
+ ...+ αn

(
x

n

)
is integer-valued and αk = gk(k) ∈ Z.

For a general D, we might then wonder if Int(D) has a regular basis, that is a basis with exactly
one polynomial of each degree. To begin to answer this question, let’s make a new defintion.

Definition Let B be a domain such that D[x] ⊆ B ⊆ Int(D). Define the characteristic ideals
Jn(B) of B to be Jn(B) = {0}

⋃
{α ∈ K | ∃f ∈ B, f = αxn + αn−1x

n−1 + ...}. That is, Jn(B)
is the collection of leading coefficients of polynomials of degree n in B.

We can see immediately that D ⊆ Jn(B) for all n, since D[x] ⊆ B. Also, if f has degree m < n
is in B, then xn−mf ∈ B. So we obtain the following containments.

D ⊆ J0(B) ⊆ ... ⊆ Jn−1(B) ⊆ Jn(B) ⊆ ... ⊆ K

We called these objects ideals, but in what sense are they ideals? Recall that a fractional ideal of
D is a D-submodule J of K such that there is an element d ∈ D for which dJ is an integral ideal
of D.

Proposition 3.3 For each n ∈ N, Jn(B) is a fractional ideal of D.

Now that we have defined characteristic ideals, we can state a couple of interesting results. Let
D[x] ⊆ B ⊆ Int(D).

Proposition 3.4 B has a regular basis if and only if theD-modules Jn(B) are principal fractional
ideals of D.

Corollary 3.5 If D is a principal ideal domain, then B has a regular basis.

Since we have already found a regular basis for Int(Z), it is easy to observe that the characteristic

ideals of Int(Z) are Jn(Int(Z)) =
1

n!
Z. It is interesting to consider what these characteristic

ideals should be in a more general setting. It would be great if there were a generalization of the
factorial function that made sense in more rings. In 1997, Bhargava discovered the appropriate
generalization of factorials which answers the question for all Dedekind domains [1]. He defines:
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Definition Let D be a Dedekind domain, let S be an arbitrary subset of D, and let p ≤ D be a
prime ideal. A p-ordering of S is a sequence {ai}∞i=0 of elements of S that is formed as follows:
Choose any element a0 ∈ S;
Choose an element a1 ∈ S that minimizes the ` such that a1 − a0 ∈ p`.
and in general at the kth step,
Chhose an element ak ∈ S that minimizes the ` such that (ak − a0)(ak − a1)...(ak − ak−1) ∈ p`.

Definition We will also define vk(S, p) = p` to be the minimal power ` of p used in the kth step of
the definition above. This makes {vk(S, p)} a monotone increasing sequence, which we will call
the associated p-sequence of S.

It turns out that the associated p-sequence of S is independent of our choice of p-ordering, and this
allows us to define a generalized factorial function!

Definition Let D be a Dedekind domain, and S be a subset of D. Then the factorial function of S
is defined by:

k!S =
∏
p

vk(S, p).

Notice that in general this gives us an ideal of D, not an element.

Theorem 3.6 Let D be a Dedekind domain. Int(D) has a regular basis if and only if k!D is a
principal ideal for all k ≥ 0. If this is the case, the regular basis is given by:

(x− a0,k)(x− a1,k)...(x− ak−1,k)
k!D

where {ai,k}∞i=0 is a sequence in D which is termwise congruent modulo vk(D, p) to some p-
ordering of D.

4 Int(D) as a Ring
Int(D) has many interesting ring theoretic properties. Let’s explore a few of them, paying partic-
ular attention to our concrete example, Int(Z).
Recall for our first observation that a ring is Noetherian if each of its ideals is finitely generated,
or equivalently, if it satisfies the Ascending Chain Condition. That is to say, any chain of ideals
I1 ⊆ I2 ⊆ ... of the ring eventually stabilizes.

Proposition 4.1 Int(Z) is non-Noetherian.

Proof Let’s consider the ideals generated by the basis elements of positive degree at most the ith

prime. Ij =
((

x

1

)
, ...,

(
x

pj

))
, where pj is the jth prime. Then I1 ⊂ I2 ⊂ ... is a nonterminating

propoerly ascending chain of ideals.

Prime ideals play a central role in the study of commutative rings, and understanding of the
prime and maximal ideals of a ring is important when studying the structure of a ring. For Int(Z),
we can give a complete description of its prime spectrum, though proving it requires a lengthy
digression into ideal-adic topology.
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Theorem 4.2 (i) The prime ideals of Int(Z) above a prime number p are in one-to-one correspon-
dence with the elements of the p-adic completion Ẑp of Z. To each element α ∈ Ẑp, corresponds
the maximal ideal Mp,α = {f ∈ Int(Z) | f(α) ∈ pẐp}
(ii) The nonzero prime ideals of Int(Z) above (0) are in one-to-one correspondence with the
monic polynomials irreducible in Q[x]. To the irreducible polynomial q corresponds the prime
Bq = qQ[x] ∩ Int(Z).

Remark What is Ẑp?

Every integer can be written in base p as ±
n∑
i=0

aip
i. We could think of two numbers c and d being

close together if their base p representations match at the beginning. This means c− d is divisible
by a high power of p. For example, if p = 5 a sequence beginning {1, 1 + 3× 5, 1 + 3× 5 + 2×
52, 1 + 3 × 5 + 2 × 52 + 2 × 53, ...} is a Cauchy sequence if it continues in this manner, since
the elements differ by higher and higher multiples of 5. But if the sequence never stabilizes, it
won’t converge to an element of Z. The collection of limit points of such sequences is Ẑp, and its
elements can be viewed as power series in p.

We can make some weaker statements that apply to many more rings. First let’s give a defini-
tion.

Definition The Krull dimension of a ring is the supremum of the lengths n of chains of prime
ideals p0 ⊂ p1 ⊂ ... ⊂ pn in the ring .

Lemma 4.3 Let p be a prime ideal of D, and let d ∈ D. Then Bp,d = {f ∈ Int(D) | f(d) ∈ p} is
a prime ideal of Int(D) above p.

Proof If f, g ∈ Bp,d, then [f−g](d) = f(d)−g(d) ∈ p, so f−g ∈ Bp,d. If f ∈ Bp,d, g ∈ Int(D),
then [fg](d) = f(d)g(d) ∈ p, and hence fg ∈ Bp,d. Clearly Bp,d ∩D = p.

Proposition 4.4 dim(Int(D)) ≥ dim(D) + 1

Proof Let (0) = p0 ⊂ p1 ⊂ ... ⊂ pn be a chain of prime ideals of D and let d ∈ D. Then we will
show that (0) ⊂ Bp0,d ⊂ Bp1,d ⊂ ... ⊂ Bpn,d is a chain of prime ideals in Int(D) of length n+ 1.
We have shown in the lemma that Bpi,d lies over pi, so these ideals are distinct. We then notice that
(x− d) ∈ Bp0,d, and so Bp0,d 6= (0).

4.1 The Skolem Property
One of the most interesting ideal theoretic properites of rings of integer-valued polynomials is
the Skolem property. Since the elements of these rings are polynomials, we can evaluate them at
various elements of the domain D.

Definition Let I be an ideal of Int(D). For each a ∈ D, the set I(a) = {f(a) | f ∈ I} is easily
seen to be an ideal of D, which we will call the ideal of values of I at a.

Now that we have defined ideals of values, it’s natural to ask whether any other polynomials take
the same values as the polynomials in I .
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Definition Let I be an ideal of Int(D). Define I∗ = {f ∈ Int(D) | f(a) ∈ I(a)foreacha ∈ D},
and call I∗ the Skolem closure of I .

The Skolem closure is a true closure operation, and it is the smallest ideal of Int(D) with the same
ideals of values as I .

Definition i) We say that Int(D) has the Skolem property if the Skolem closure of each proper
finitely generated ideal of Int(D) is also proper.
i’) Equivalently, Int(D) has the Skolem property if the only finitely generated ideal I of Int(D)
for which I(a) = Int(D) for all a ∈ D is the full ring Int(D).
ii) We say that Int(D) has the strong Skolem property if each finitely generated ideal of Int(D)
is Skolem closed.
ii’) Equivalently, Int(D) has the strong Skolem property if, for any two finitely generated ideals
I, J of Int(D), I(a) = J(a) for all a ∈ D implies I = J .

Remark We have defined the Skolem property for Int(D), but we could have defined it in the
same way for any subset of Int(D).

Example The Skolem property is an unusual one for a ring to have. Let’s demonstrate that Z[x]
does not satisfy it. Consider the ideal I = (2, x(x − 1) + 1). I(a) = Z for each a ∈ Z since
x(x− 1) + 1 is always odd, but I 6= Z[x]!

Proposition 4.5 Int(Z) has the strong Skolem property.

More generally,

Theorem 4.6 If D is the ring of integers of a number field, then Int(D) has the strong Skolem
property.

The Skolem property is very closely related to a number of interesting topics, one of which is
Hilbert’s Nullstellensatz, which can be stated as follows to make the connection clear.

Theorem 4.7 (Hilbert’s Nullstellensatz I) LetK be an algebraically closed field, then each proper
ideal I of K[x] has a zero in K.

This is exactly the Skolem property! The theorem can be stated equivalently as

Theorem 4.8 (Hilbert’s Nullstellensatz II) LetK be an algebraically closed field. For each ideal
I of K[x], if f ∈ K[x] is such that for each a ∈ K, f(a) ∈ I(a), then f ∈

√
I .

5 Applications and Extensions
Integer-valued polynomials are an interesting topic of study in their own right, but they also pro-
vide a useful tool in other areas of mathematics. In algebraic geometry, the Hilbert polynomial
is integer-valued, and the basis we found for Int(Z) is helpful in computations of the dimension
and degree of algeraics varieties. The use of Hilbert polynomials also provides a simple proof
of Bézout’s Theorem, which states that the number of intersection points of two plane algebraic
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curves is equal to the product of their degrees. See for instance, [11].

Integer-valued polynomials also appear with some regularity in algebraic topology; they ap-
pear, for example, as the maps of certain categories in homotopy theory, [8].

There are many more interesting theorems and avenues of study surrounding integer-valued
polynomials. We haven’t mentioned polynomials that are integer-valued on subsets, the connec-
tion between Int(D) and the I-adic topology, the Stone-Weierstrass Theorem for integer-valued
polynomials, integer-valued polynomials in several indeterminates, and many more fascinating
topics. Check out the references if you’re intersted in seeing more!
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algébrique. L’enseignement matheématique, 19:323–324, 1917.
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