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An elementary proof that the image of a non-
atomic finite measure is a closed interval

Let (S, Σ, µ) be a measure space. A set A ∈ Σ is called an atom if µ(A) > 0 and for each B ∈ Σ
with B ⊂ A either µ(B) = 0 or µ(B) = µ(A). Note that if A is not an atom, then there is some
B, C ∈ Σ such that B, C ⊂ A and µ(B) ∈ (0, 1

2
µ(A)] and µ(C) ∈ [1

2
µ(A), µ(A)). A non-atomic

measure is defined as a measure without atoms. Define µ(Σ) as {µ(A) : A ∈ Σ}.

Theorem. If µ is a non-atomic finite measure, then µ(Σ) = [0, µ(S)].

P roof. For simplicity, we may assume that µ(S) = 1, or else we could look at the non-atomic
finite measure 1

µ(S)
µ.

Subclaim 1. There is some A ∈ Σ such that µ(A) ∈ (1
4
, 1

2
].

ProofofSubclaim. We will show the stronger result that for any B ∈ Σ with µ(B) > 0, there is
some A ∈ Σ with A ⊂ B and µ(A) ∈ (1

4
µ(B), 1

2
µ(B)]. Let B ∈ Σ with µ(B) > 0. Assume that

there is not such an A ∈ Σ with A ⊂ B and µ(A) ∈ (1
4
µ(B), 1

2
µ(B)]. If there was an A ∈ Σ with

A ⊂ B and µ(A) ∈ [1
2
µ(B), 3

4
µ(B)), then B\A ⊂ B and µ(B\A) ∈ (1

4
µ(B), 1

2
µ(B)]. So for each

A ⊂ B either µ(A) ∈ [0, 1
4
µ(B)] or µ(A) ∈ [3

4
µ(B), µ(B)].

The set C = {A ∈ Σ : A ⊂ B and µ(A) ≥ 3
4
µ(B)} is not empty, since B ∈ C. Also, C is

closed under finite intersection, since if C, D ∈ C, then µ(C ∩ D) = µ(C) + µ(D) − µ(C ∪ D) ≥
(3

4
+ 3

4
− 1)µ(B) = 1

2
µ(B). By assumption, if µ(C ∩D) ≥ 1

2
µ(B), then µ(C ∩D) ≥ 3

4
µ(B), and so

C ∩D ∈ C.
Define α by

α = inf
A∈C

µ(A)

So α ≥ 3
4
µ(B) and for each n ∈ N, there is some An ∈ C such that µ(An) < α + 1

n
. Define

Bn recursively by B1 = A1 and Bn+1 = Bn ∩ An+1. Since C is closed under finite unions, Bn is a
decreasing sequence of sets in C, and for each n ∈ N, α ≤ µ(Bn) < α + 1

n
.

Let G =
⋂

n Bn. So α ≤ µ(G) < α + 1
n

for each n. Hence µ(G) = α. So G ∈ C, and since G is
not an atom, there is some H ⊂ G such that µ(H) is in [α

2
, α). Since α ≥ 3

4
µ(B), α

2
≥ 3

8
µ(B) and

so by assumption, H ∈ C contradicting minimality of α.

Subclaim 2. For any B ∈ Σ with µ(B) ∈ (1
4
, 1

2
] and for any n ∈ N, there is some C ∈ Σ such

that C ⊂ S\B and µ(C) ∈ [ 2
4n , 3

2·2n )

ProofofSubclaim. Use induction on n. So µ(S\B) ∈ [1
2
, 3

4
). For n = 1, we may choose C = S\B.

Let n ≥ 1 and suppose there is some D ⊂ S\B where µ(D) ∈ [ 2
4n , 3

2·2n ). By applying the
stronger statement in the proof of the previous subclaim, there is some C ⊂ D where µ(C) ∈
(1

4
µ(D), 1

2
µ(D)], but since µ(D) ∈ [ 2

4n , 3
2·2n ), µ(C) ∈ [ 2

4n+1 ,
3

2·2n+1 ). Since C ⊂ D, C ⊂ S\B.

Subclaim 3. For each C ∈ Σ such that 1
4

< µ(C) < 1
2

and for each n ∈ N , there is some D ∈ Σ
such that C ⊂ D and 1

2
− 3

2·2n ≤ µ(D) < 1
2
.

P roofofSubclaim. Suppose C ∈ Σ such that 1
4

< µ(C) < 1
2

and n ∈ N. We will define an increasing
finite sequence of sets Dm, recursively, where m ∈ {0, 1, 2, . . . , 4n−1}. Let D0 = C. Suppose Dk

for k ∈ {0, 1, . . . ,m} is defined and is an increasing sequence of sets. If µ(Dm)+ 3
2·2n ≥ 1

2
, then let



Dm+1 = Dm. Else µ(Dm) + 3
2·2n < 1

2
and so 1

4
< µ(Dm) < 1

2
. We may apply the second subclaim.

So there is some Em ⊂ S\Dm such that µ(Em) ∈ [ 2
4n , 3

2·2n ). Define Dm+1 = Dm ∪ Em.
Hence µ(Dm) + 2

4n ≤ µ(Dm+1) < µ(Dm) + 3
2·2n < 1

2
.

So from either case for the definition, Dm ⊂ Dm+1 and since µ(C) < 1
2
, each µ(Dm) < 1

2

Suppose one of the Dm satisfies µ(Dm) + 3
2·2n ≥ 1

2
, then let k be the least such m. So C ⊂ Dk

and µ(Dk) + 3
2·2n ≥ 1

2
yields 1

2
− 3

2·2n ≤ µ(Dk) and µ(Dk) < 1
2
. We can choose D = Dk.

Suppose none of the Dm satisfies µ(Dm) + 3
2·2n ≥ 1

2
, then for each m ∈ {0, 1, 2, . . . , 4n−1 − 1},

µ(Dm) + 2
4n ≤ µ(Dm+1). For each m ∈ {0, 1, 2, . . . , 4n−1}, µ(C) + 2

4n ·m ≤ µ(Dm). For m = 4n−1,
µ(C)+ 1

2
≤ µ(Dm), and so µ(Dm) ≥ 1

2
which is a contradiction. Hence one of the Dm must satisfy

µ(Dm) + 3
2·2n ≥ 1

2
.

Subclaim 4. There is some E ∈ Σ such that µ(E) = 1
2
.

ProofofSubclaim. By the first subclaim, there is some A ∈ Σ such that µ(A) ∈ (1
4
, 1

2
]. If

µ(A) = 1
2
, choose E = A. If µ(A) < 1

2
, then we define a sequence of increasing sets Bn by

recursion. Let B0 = A. Then by the third subclaim, there is some B1 such that B0 ⊂ B1 and
1
2
− 3

2·21 ≤ µ(B1) < 1
2
. and so µ(B1) ∈ (1

4
, 1

2
). We apply the third subclaim again, to obtain some

B2 such that B1 ⊂ B2 and 1
2
− 3

2·22 ≤ µ(B2) < 1
2

and moreover µ(B2) ∈ (1
4
, 1

2
). And so on.

So Bn is an increasing sequence of sets such that for each m ∈ N, 1
2
− 3

2·2m ≤ µ(Bm) < 1
2
.

Let E =
⋃

n Bn. Then for each n ∈ N, 1
2
− 3

2·2n ≤ µ(E) ≤ 1
2
. Hence µ(E) = 1

2
.

Denote the dyadic rationals in [0, 1] by Q2 := {m
2n : m ∈ Z, n ∈ N} ∩ [0, 1].

Subclaim 5. There is a collection of subsets, (Ar)r∈Q2 , of S indexed by the dyadic rationals such
that µ(Ar) = r and if r < s, then Ar ⊂ As.

ProofofSubclaim. We will define the sequence of sets indexed by recursion. In the nth step, we
will define A m

2n
for each m ∈ {1, 3, , 5 . . . , 2n − 1} where for k, m ∈ {0, 1, . . . , 2n} with k ≤ m,

A k
2n
⊂ A m

2n
and µ(A k

2n
) = k

2n

Define A0 = ∅ and A1 = S. So A0 ⊂ A1.
Suppose we have define such sets A m

2n
for each m ∈ {0, 1, . . . , 2n}. We wish to define A 2k+1

2n+1
for

each k ∈ {0, 1, . . . , 2n − 1}.
Let k ∈ {0, 1, . . . , 2n − 1} and let C = A k+1

2n
\A k

2n
.

The measure ν = 2n ·µ |C is a non-atomic measure with ν(C) = 1. So there is some E ⊂ C such
that ν(E) = 1

2
by the fourth subclaim. Let A 2m+1

2n+1
= A m

2n
∪E. Then µ(A 2m+1

2n+1
) = m

2n + 1
2n · 1

2
= 2m+1

2n+1

and A m
2n
⊂ A 2m+1

2n+1
⊂ Am+1

2n
.

Now we can finish the proof to the theorem.
We have defined for each β ∈ Q2, a set Aβ such that µ(Aβ) = β and for each β, γ ∈ Q2 with

β < γ, Aβ ⊂ Aγ.
For each c ∈ [0, 1], define a set Bc =

⋃
β≤c Aβ. (Note: This union is countable and so Bc ∈ Σ).

Also for any β, γ ∈ Q2 with β ≤ c ≤ γ, Aβ ⊂ Bc ⊂ Aγ and so β ≤ µ(Bc) ≤ γ.
Hence µ(Bc) = c.


