What is the crank of a partition?
Daniel Glasscock, July 2014

These notes complement a talk given for the What is ... 7 seminar at the Ohio State University.

Introduction

The crank of an integer partition is an integer statistic which yields a combinatorial explanation of
Ramanujan’s three famous congruences for the partition function. The existence of such a statistic was
conjectured by Freeman Dyson in 1944 and realized 44 years later by George Andrews and Frank Gravan.
Since then, groundbreaking work by Ken Ono, Karl Mahlburg, and others tells us that not only are there
infinitely many congruences for the partition function, but infinitely many of them are explained by the
crank.

In this note, we will introduce the partition function, define the crank of a partition, and show how
the crank underlies congruences of the partition function. Along the way, we will recount the fascinating
history behind the crank and its older brother, the rank. This exposition ends with the recent work of
Karl Mahlburg on crank function congruences. Andrews and Ono [3] have a good quick survey from
which to begin.

The partition function

The partition function p(n) counts the number of distinct partitions of a positive integer n, where a
partition of n is a way of writing n as a sum of positive integers. For example, p(4) = 5 since 4 may
be written as the sum of positive integers in 5 essentially different ways: 4, 3+ 1,2+ 2,2+ 1+ 1, and
1+ 1414 1. The numbers comprising a partition are called parts of the partition, thus 2 4+ 1 4+ 1 has
three parts, two of which are odd, and is not composed of distinct parts (since the 1 repeats).

The partition function is a central object in combinatorics and number theory. To get a feeling for
it, let’s revisit three landmarks in the history of p(n).

1. Leonhard Euler was perhaps the first to study the partition function seriously. He showed [9] in

1748 that
PO)+ (1) + p(2)a? + o=
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that is, the generating function of the sequence {p(n)}zozo is (formally) the infinite product of
the rational functions (1 — z¥)~1. (We adopt the convention here that p(0) = 1.) Euler used this
generating function to deduce a recurrence relation for p(n) and prove interesting combinatorial
facts about partitions. For example, he showed that the number of partitions of n into distinct

parts is the same as the number of partitions of n into odd parts.

2. Srinivasa Ramanujan and Godfrey Harold Hardy [10] in 1918, and independently James Victor
Uspensky [16] in 1920, showed that

1 Ty/2n/3
p(n) = ——e as n — 0.
(n) 4\/3 n
(Paul Erdés [8] later gave an elementary proof of this fact.) An explicit formula for p(n) in the
form of an infinite, convergent series was achieved by Hans Rademacher [14] in 1938. It is an
interesting exercise to devise the most elementary argument you can showing that the growth of
p(n) is super-polynomial but at most exponential.

3. Ramanujan [15] in 1919 stated the following congruences for p(n): for all k > 0,

p(bk+4) =0 (mod 5), (1)
p(7Tk+5)=0 (mod 7), (2)
p(11k+6) =0 (mod 11). (3)
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The first congruence, for example, gives that the number of partitions of any number ending in the
digit 4 or 9 is a multiple of 5! Ramanujan proved the first two congruences in his paper, and the
proof of the third was extracted by Hardy from Ramanujan’s notebooks after Ramanujan’s death
in 1920. Recent work by Ken Ono and others has revolutionized what we know about partition
function congruences; we’ll revisit this later on in the talk.

The crank of a partition is related to congruences of the partition function, so we will follow this line
in more depth. Before defining the crank, it is worthwhile to introduce its older brother, the rank.

The rank of a partition

Since p(5k + 4) is always divisible by 5, one may wonder whether there is a natural way split the
partitions of 5k 44 up into 5 groups of equal size. In searching for this sort of combinatorial explanation
to Ramanujan’s congruences, Freeman Dyson [7] in 1944, then an undergraduate at the University of
Cambridge, defined the rank of a partition 7 to be

rank(w) = (largest part of 7r) — (# of parts of 7r).

For example, rank(5 + 3+ 2+ 1) = 1 since 5 is the largest of the 4 parts (of this partition of 11). Based
on empirical evidence (see Tables 1, 2, 4, and 6), Dyson conjectured that the rank modulo 5 naturally
splits the partitions of 5k + 4 into 5 groups of equal size. He conjectured additionally the analogous
behavior for 7 with the partitions of 7k 4+ 5. The rank, in this sense, would provide a nice combinatorial
explanation of (1) and (2), Ramanujan’s first and second congruences.

To facilitate the discussion, define

N (m, q,n) = number of partitions of n with rank equal to m modulo g.
In this notation, Dyson’s conjectures become: for all k& > 0,

N(0,5,5k +4) = N(1,5,5k +4) = --- = N(4,5,5k +4), and
N(O,7,Tk+5) = N(1,7,7Tk +5) = --- = N (6,7, 7k + 5).

Ten years later, Arthur Oliver Lonsdale Atkin and Peter Swinnerton-Dyer [5] proved these conjectures
of Dyson, establishing the rank as a partition statistic which satisfactorily describes the first two of
Ramanujan’s congruences combinatorially.

Mysteriously, the rank modulo 11 completely fails to provide any sort of explanation for (3), Ra-
manujan’s third congruence. This is apparent already for partitions of 6, the first {11k + 6}; see Tathe
rank modulo 11 column in ble 3. Dyson was aware of this (painfully, perhaps), but he was optimistic
about the approach. He conjectured the existence of another partition statistic, the crank of a partition,
which, modulo 11, was to explain Ramanujan’s third congruence just as the rank explains the first two.
It is worth revisiting Dyson’s original text on this point:

The regularity of this table is of precisely the same character as the regularity of the previous
one. One is thus led irresistibly to the conclusion that there must be some analogue modulo
11 to the relations (26).

I hold in fact:

That there exists an arithmetical coefficient similar to, but more recondite than, the rank of
a partition; I shall call this hypothetical coefficient the “crank” of the partition, and denote
by M(m,q,n) the number of partitions of n whose crank is congruent to m modulo q;

that M(m,q,n) = M(q —m,q,n);
that M(0,11,11n + 6) = M(1,11,11n + 6) = - -- = M (4,11, 11n + 6);

that numerous other relations exist analogous to (12) — (19) ...



Whether these guesses are warranted by the evidence, I leave to the reader to decide. What-
ever the final verdict of posterity may be, I believe the “crank” is unique among the arith-
metical functions in having been named before it was discovered. May it be preserved from
the ignominious fate of the planet Vulcan!

The planet Vulcan was hypothesized by the 19th century French mathematician Urbain Le Verrier
to explain peculiarities in the orbit of Mercury. Unlike the planet Vulcan, whose existence never panned
out, Dyson’s crank was realized more than 40 years later.

The crank of a partition

In 1988, George Andrews and Frank Garvan [2] finally realized Dyson’s crank statistic. For a partition
m, let 1(m) be the number of 1’s in 7. They defined the crank of the partition 7 to be

largest part of m if 1(r) =0
1

crank() = {(# of parts greater than 1(r)) — 1(r) if 1(m) >

For example, crank(4 + 2+ 1+ 1) = —1 since there is 1 part (namely, 4) greater than the number of 1’s
(there are 2), and crank(2 + 2 4+ 2) = 2 since there are no 1’s in this partition and 2 is its largest part.

In the same way as the rank gives combinatorial justification to Ramanujan’s first two congruences,
the crank explains Ramanujan’s third: Andrews and Garvan proved that the crank modulo 11 splits the
partitions of 11k 4 6 into 11 groups of equal size! In fact, they showed that the crank modulo 5 and 7
splits the partitions of 5k + 4 and 7k + 5 into 5 and 7 groups of equal size, respectively. In other words,
the crank explains combinatorially all three of Ramanujan’s congruences!

Let’s introduce the aogue to N for clarity. Define

M(m, q,n) = number of partitions of n with crank equal to m modulo g.

In this notation, Andrews and Garvan’s theorem is that for all k£ > 0,

M(0,5,5k +4) = M(1,5,5k +4) = - - = M(4, 5,5k + 4),
M(0,7,7k +5) = M(1,7,7k +5) = - -- = M(6,7, 7k + 5), and
M(0,11,11k + 6) = M(1,11,11k + 6) = - -- = M(10, 11, 11k + 6).

To see the crank in action, consider Tables 1, 2, 3, and 5. For partitions of 4, 5, and 6, the crank
modulo 5, 7, and 11, respectively, is unique; that is, the crank induces an equinumerous splitting of the
partitions in which each group has one partition. Comparing Tables 4 and 5, we see that the crank and
rank induce different equinumerous splittings of the partitions of 9.

Fairy-tale endings are not common in mathematics, and this story is no exception. Indeed, there
are many more congruences for the partition function far beyond Ramanujan’s original three, each
warranting a similar combinatorial explanation. It turns out that the crank does continue to provide
explanations for infinitely many of these congruences, albeit in a slightly weaker manner.

Further congruences and behavior of the crank

The partition function satisfies additional congruences similar to the original ones of Ramanujan. In fact,
Ramanujan conjectured, and it was later shown, that such congruences exist modulo arbitrary powers
of 5, 7, and 11. In 1967, Atkin and J. N. O’Brien [4] discovered further congruences; for example, for all
k>0,

p(17303k +237) =0 (mod 13).

In groundbreaking work in the year 2000, Ken Ono [13] showed that there are infinitely many families
of such congruences.



Theorem 1 (Ono). Let g > 5 be prime. There exist infinitely many non-nested arithmetic progressions
{Ak + B}¢2, such that for all k >0,

p(Ak+B) =0 (mod q).

Some specific examples of such higher congruences (from [13], [3], [12], respectively) include

p(157525693k + 111247) =0 (mod 13),
p(48037937k + 1122838) =0 (mod 17),
p(1977147619k + 815655) =0 (mod 19).

Ahlgren and Ono [1] went on to show that such congruences exist for the partition function for any
modulus ¢ coprime to 6!

In light of our previous discussion, one is led naturally to ask whether or not the crank provides
the same sort of combinatorial justification for these higher congruences as it does for Ramanujan’s
congruences. Addressing this question, Karl Mahlburg [11, 12] in 2005, then a Ph.D. student of Ono’s,
showed that the crank functions M(m, ¢, n) satisfy congruence relations similar to those of the partition
function. These congruences for the crank underlie congruences for the partition function!

To make this precise, note first that by the definition of M(m,¢,n), by summing over all residue
classes modulo ¢,

p(n) =Y M(m,q.n). (4)
m=0

When ¢ =5, 7, or 11 and n = 5k+4, Tk+5, or 11k +6, respectively, Andrews and Garvan’s theorem tells
us that all ¢ factors in this sum are equal, yielding immediately that p(n) is divisible by ¢. Mahlburg
reached the same conclusion on the divisibility of p(n) by showing that all ¢ factors in this sum are
divisible by q.

Theorem 2 (Mahlburg). Let ¢ > 5 be prime. There exists infinitely many non-nested arithmetic
progressions { Ak + B}2 , such that for all k > 0 and for all0 < m < g —1,

M(m,q, Ak + B) =0 (mod q).

In other words, Mahlburg’s theorem shows that the crank yields a combinatorial explanation for infinitely
many families of congruences for the partition function!

To wrap up, let’s address three of the many questions one is led naturally to ask.

First, does the crank yield an equinumerous splitting of the partitions of n (along arithmetic pro-
gressions) modulo ¢ for any ¢ besides 5, 7, and 11 (as it does for Ramanujan’s congruences)? Mahlburg
writes in his thesis [12] in 2005 that the behavior of the crank modulo these small primes is atypical:

The crank functions modulo N differ from p(n)/N by a meromorphic modular form, and it
is reasonable to expect that with the exception of finitely many small primes and arithmetic
progressions (which will perhaps turn out to include only those for Ramanujan’s congruences),
this difference is never zero. As a consequence, Theorem [2] would then be the best possible
result, in the sense that there are no infinite families of partition congruences that are grouped
into equal classes by the crank.

According to Mahlburg (personal communication, July 2014), this question is still unresolved.

Second, what about behavior of the rank for these higher congruences? In 2009, Kathrin Bringmann
[6] showed that Dyson’s rank functions also satisfy infinite families of congruences.

Theorem 3 (Bringmann). Let ¢ > 5 be prime. There exists infinitely many non-nested arithmetic
progressions { Ak + B}2 , such that for all k > 0 and for all 0 < m < g —1,

N(m,q,Ak+ B)=0 (mod q).
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Writing the analogue of (4) for the rank functions, Bringmann’s theorem gives immediately that the
rank underlies infinitely many families of congruences for the partition function, just like the crank!
Finally, which congruences are explained by the rank and crank? Mahlburg and Bringmann’s the-
orems give only existence and don’t provide, as stated, concrete examples. If there are congruences
not explained by the rank or crank, are there other partition statistics which yield in a similar fashion
combinatorial explanations to large families of congruences of the partition function?
This seems to be a nice, motivational, open-ended place to end these notes.

Tables

Table 1: Partitions of 4

partition rank rank (mod 5) crank crank (mod 5)
4 3 3 4 4
3+1 1 1 0 0
2+2 0 0 2 2
2+1+1 —1 4 -2 3
1+14+1+1 -3 2 —4 1

Table 2: Partitions of 5

partition rank rank (mod 7) crank crank (mod 7)
5 4 4 5 5
4+1 2 2 0 0
3+2 1 1 3 3
3+1+1 0 0 -1 6
2+2+1 -1 6 1 1
2414141 -2 ) -3 4
1+1+1+1+1 -4 3 -5 2

Table 3: Partitions of 6

partition rank rank (mod 11) crank crank (mod 11)
6 ) ) 6 6
5+1 3 3 0 0
4+2 2 2 4 4
4+1+1 1 1 -1 10
3+3 1 1 3 3
3+2+1 0 0 1 1
3+1+1+1 -1 10 -3 8
2+242 -1 10 2 2
2+2+1+1 -2 9 -2 9
241414141 -3 8 —4 7
1+14+14+1+1+1 =5 6 —6 5
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