What is the Veronese map?

Simon Zhang

July 26, 2016

Abstract

We introduce the Veronese map $\nu_d : \mathbb{P}^n \rightarrow \mathbb{P}^{N(n,d)}$, a popular example in algebraic geometry. We consider the $d=2$ and $n=2$ case as the Veronese surface. The Veronese variety is also defined and for the $n=2$, $d=2$ case shown equivalent to a determinantal variety. We state the map's embedding property. A consequence of this is the isomorphism of \mathbb{P}^n with $\nu_d(\mathbb{P}^n)$ and the Veronese variety.

1 Preliminary Definitions

Definition 1. (Projective space) $\mathbb{P}^n(\mathbb{C}) = \{ [Z_0 : \cdots : Z_n] \ | \ (\lambda Z_0, \cdots, \lambda Z_n) = (Z_0, \cdots, Z_n) \in \mathbb{C}^{n+1} - \{0\} \}$ for $\lambda \in \mathbb{C}^*$.

Remark 1. Notice $\mathbb{P}^n(\mathbb{C}) = \text{Gr}(1,n+1)$, the space of lines through the origin in \mathbb{C}^{n+1}, a Grassmanian. Also notice that instead of \mathbb{C} we could have used any algebraically closed field.

Definition 2. (Projective Variety) $X \subset \mathbb{P}$ is the zero locus of a finite set of homogeneous polynomials that generate a prime ideal.

Recall a homogeneous polynomial F of degree d on \mathbb{C}^{n+1} means: $F(\lambda Z_0, \cdots, \lambda Z_n) = \lambda^d F(Z_0, \cdots, Z_n)$.

This allows us to define zero loci $\subset \mathbb{P}^n$ for a collection of homogeneous polynomials.

Remark 2. We will use the notation $Z(\{f_\alpha\}_\alpha)$ to denote the common zero locus of a set of polynomials $\{f_\alpha\}_\alpha$.

2 The Veronese map

Definition 3. (Veronese map) the Veronese map of degree d is $\nu_d : \mathbb{P}^n \rightarrow \mathbb{P}^N$ as:

$[X_0 \cdots X_n] \mapsto [\cdots X^i_0 \cdots X^i_n : \cdots] = \{ \cdots Z_{i_0 \cdots i_n}(X_0, \cdots, X_n), \cdots \} = [Z_0 \cdots Z_N]$

where $X^i_0 \cdots X^i_n$ ranges over all monomials of degree d in $X_0 \cdots X_n$, meaning $i_0 + \cdots + i_n = d$, for some ordering.

Remark 3. Notice $\{ [\cdots Z_{i_0 \cdots i_n}(X_0, \cdots, X_n), \cdots] \} \subset \{ [Z_0 \cdots Z_N] \}$
Proposition 1. \(N = \binom{n+d}{d} - 1 \)

Proof. Count the number of monomials of degree \(d \) using \(d \) balls and \(n \) walls then subtract one by the projective space definition.

Remark 4. Notice that given \(N \) and \(d \), it is generally complicated to find \(n \). Similarly given \(N \) and \(n \), it is generally complicated to find \(d \).

3 The \(n=2, d=2 \) case

Definition 4 (Veronese surface). let \(n=2, d=2 \)
\[
\nu_2 : \mathbb{P}^2 \to \mathbb{P}^5
\]
\[
\nu_2([X_0, X_1, X_2]) = [X_0X_0, X_1X_1, X_2X_2, X_0X_1, X_0X_2, X_1X_2].
\]
The Veronese surface is \(\nu_2(\mathbb{P}^2) \).

Definition 5 (Veronese variety for \(n=2, d=2 \)). \(\nu_{2,2} := Z(\{Z_0Z_1 - Z_3Z_3, Z_0Z_5 - Z_4Z_3, Z_0Z_2 - Z_4Z_4, Z_3Z_5 - Z_4Z_1, Z_2Z_2 - Z_4Z_5, Z_1Z_2 - Z_5Z_5\}) \) where \([Z_0 \cdots Z_5] \in \mathbb{P}^5\)

Remark 5. Notice that \(\nu_{2,2} = Z(\ker(\theta)) \) for the \(n=2, d=2 \) case of definition 6.
We do not prove this fact.
Thus \(\nu_{2,2} \) is a projective variety by proposition 3.

Lemma 1 (equivalent condition for \(p \times q \) matrix to be rank \(k \)). Given a \(p \times q \) matrix \(M \); WLOG \(p \leq q \).
Let \(k \geq 0 \), \(k+1 \leq p \). All \((k+1) \times (k+1) \) minors are 0 and there is a \(k \times k \) non-zero minor iff \(\text{rank}(M) = k \).
The case of \(\text{rank}(M)=p \) is trivial.

Proof. Fact: There exists a \(j \times j \) nonzero minor iff there exists \(j \) linearly independent rows.

There is a nonzero minor of order \(k \) iff there must be at least \(k \) linearly independent rows in \(M \).
iff \(\text{rank}(M) \geq k \).

\(\text{rank}(M) \geq k+1 \) iff there exists at least \(k+1 \) linearly independent rows. meaning there is an \(k+1 \) order submatrix taken from these \(k+1 \) rows that is invertible and thus has nonzero determinant iff there is some \(k+1 \) order minor nonzero. Therefore by contrapositive: \(\text{rank}(M) \leq k \) iff all \(k+1 \) order minors are zero.

Therefore \(\text{rank}(M)=k \) iff all \((k+1) \times (k+1) \) minors are 0 and there is a \(k \times k \) non zero minor

Exercise 1. Show that the dimension of the row space = dimension of the column space for any \(p \times q \) matrix. (This proves one direction of the Fact in the above proof.)
Proposition 2. $\mathbb{V}_{2,2} = \{ [Z_0 \cdots Z_5] \in \mathbb{P}^5 \mid \begin{pmatrix} Z_0 & Z_3 & Z_4 \\
Z_3 & Z_1 & Z_5 \\
Z_4 & Z_5 & Z_2 \end{pmatrix} \text{ of rank } 1 \} := \mathbb{D}_{2,2}$

Proof. (The LHS is the locus generated by all the 2×2 minors of $M = \begin{pmatrix} Z_0 & Z_3 & Z_4 \\
Z_3 & Z_1 & Z_5 \\
Z_4 & Z_5 & Z_2 \end{pmatrix}$ and at least one entry of M is nonzero since $[Z_0 \cdots Z_5] \in \mathbb{P}^5$) iff M has rank 1 by lemma 1 with $k=1$, $p=q=3$. □

We mention a corollary of the the previous proposition and the theorem on the Veronese map being an embedding:

Corollary 1 (Equivalent definitions). For $n = 2$, $d = 2$, $\mathbb{P}^2 \cong \nu_2(\mathbb{P}^2) \cong \mathbb{V}_{2,2} \cong \mathbb{D}_{2,2}$

Proof. See theorem 1 (the Veronese map is an embedding to the general Veronese Variety: $(\mathbb{P}^n \cong \nu_2(\mathbb{P}^2) \cong \mathbb{V}_{2,2})$ and proposition 2 ($\mathbb{V}_{2,2} \cong \mathbb{D}_{2,2}$) □

4. The general case

Definition 6 (the General Veronese Variety). Let $\theta : \mathbb{C}[[\{Z_{i_0 \cdots i_n}\}]] \to \mathbb{C}[X_0 \cdots X_n]$ where $i_0 + \cdots + i_n = d$ and where $\theta : \sum \prod \cdots Z_{i_0 \cdots i_n} (X_0, \cdots, X_n) \mapsto \sum \prod X_{i_0} \cdots X_{i_n} \cdots$

{[$Z_{i_0 \cdots i_n}$]} are the coordinates of \mathbb{P}^N in terms of the Veronese map. On the other hand, the codomain is in the X_j, the standard coordinates of \mathbb{P}^n (that’s why θ is not the identity map!).

Define the Veronese variety $\mathbb{V}_{n,d} := \mathbb{V}($ker($\theta))$

Exercise 2. Check that θ is a ring homomorphism.

Theorem 1 (Veronese Map is an Embedding to the general Veronese Variety). $\mathbb{X} = \mathbb{P}^n$ a projective variety and $\mathbb{Y} = \mathbb{V}_d(\mathbb{X}) \subset \mathbb{P}^N$, \mathbb{X} and \mathbb{Y} are isomorphic to the general Veronese Variety $\mathbb{V}_{n,d}$

Remark 6. By \mathbb{X} isomorphic with \mathbb{Y}, we mean that there exists a biregular map between \mathbb{X} and \mathbb{Y}. See [3] for definition of a regular map; Hartshorne calls regular maps morphisms.

Remark 7. In fact the more general fact is true: $\mathbb{X} \subset \mathbb{P}^n$ is a projective variety then $\nu_d(\mathbb{X}) = \mathbb{Y} \cong \mathbb{X}$ with \mathbb{X} and \mathbb{Y} not necessarily equal to $\mathbb{V}_{n,d}$ and \mathbb{Y} a projective variety.

Proposition 3. $\mathbb{V}_{n,d}$ is a projective variety
Proof. \(\ker(\theta) \) is clearly an ideal. Since \(\mathbb{C}[X_0 \cdots X_n] \) is an integral domain and \(\mathbb{C}[[Z_{i_0} \cdots Z_{i_n}]]/\ker(\theta) \cong \) some subring of \(\mathbb{C}[X_0 \cdots X_n] \), \(\ker(\theta) \) is a prime ideal.

Let \(f \in \mathbb{C}[[Z_{i_0} \cdots Z_{i_n}]] \), \(f = \sum_{j=0}^{k} f_j \) be a finite sum of homogeneous polynomials of degree \(i \). To show that \(\ker(\theta) \) is generated by homogeneous polynomials it suffices to show \(f \in \ker(\theta) \) iff \(f_j \in \ker(\theta) \) for \(j = 0 \cdots k \).

If \(\theta(f) = 0 = \theta(\sum_{j=0}^{k} f_j) = \sum_{j=0}^{k} \theta(f_j) \)

and since \(\theta(f_j) \) is homogeneous of degree \(d_j \), (why?)

then we cannot have cancellation in the sum and so each \(\theta(f_j) = 0 \)

iff \(f_j \in \ker(\theta) \) for all \(j = 0 \cdots k \).

Clearly \(\ker(\theta) \) is finitely generated by Hilbert basis theorem.
Thus we can pick a finite generating set of polynomials \(\text{FG} = \{ f \} \) and find their homogenous components \(f_j \) of degree \(j \) such that \(\sum_{j=0}^{k} f_j = f \) for every \(f \in \text{FG} \).
These \(f_j \) for all \(f \in \text{FG} \) are a finite homogeneous generating set of \(\ker(\theta) \)

Remark 8. Notice: \(Z(\ker(\theta)) \) is the zero locus of homogeneous polynomials \(Z_I Z_J - Z_K Z_L \) with \(I+J = K+L \) as finite sequences.

Exercise 3. Show that \(Z(< \{ f \} >) = Z(\{ f \}) \) where \(< \{ f \} > \) means ideal generated by \(\{ f \} \).

Exercise 4. What do some elements of \(\{ Z_I Z_J - Z_K Z_L \} \) look like for \(n=2, d=2 \)?

Remark 9. I originally wrote the proof of the embedding theorem and a couple of propositions about properties of the Veronese map. All such writings have been removed due to time constraints.

References

