Singular normal form for the Painlevé
equation P1

Ovidiu Costin 11! and Rodica D. Costing
T Mathematics Department, the University of Chicago, 5734 S. University
Avenue Chicago, IL 60637, e-mail: costin@math.uchicago.edu

I Mathematical Sciences Research Institute, 1000 Centennial Drive,

Berkeley, CA 94720-5070, e-mail: rcostin@msri.org

!Research at MSRI was supported in part by NSF grants DMS-9701755 and DMS-
9704968



Abstract We show that there exists a rational change of coordinates of
Painlevé’s P1 equation y” = 6y? + z and of the elliptic equation y” = 6y?
after which these two equations become analytically equivalent in a region in
the complex phase space where y and y’ are unbounded. The region of equiv-
alence comprises all singularities of solutions of P1 (i.e. outside the region
of equivalence, solutions are analytic). The Painlevé property of P1 (that
the only movable singularities are poles) follows as a corollary. Conversely,
we argue that the Painlevé property is crucial in reducing P1, in a singular
regime, to an equation integrable by quadratures.



1 Introduction

The problem of determining which classes of nonlinear differential equations
can define new transcendents (special functions having good properties), re-
ceived a special attention in the last century, especially due to the emphasis
on finding “explicit” solutions to differential equations. Fuchs had the in-
tuition that the appropriate condition these equations must satisfy is that
their solutions have no movable branch points. This feature of an equation
is now known as the Painlevé property and proved to be a very relevant
characteristic, in a wide range of problems. Fuchs’ study was pursued by
Briot and Bouquet, and then by Painlevé [1] and Gambier who showed that
there are no new transcendents coming from first order equations, but there
are six second order equations which define new special functions. These
equations (now denoted usually as P1 to P6) were discovered as a result of
a purely theoretical quest, but they later arose naturally in many distinct
physical applications (see, e.g., [2] and [3]). Linearization of second order
Painlevé equations through the isomonodromic transformation method [2],
[5], [6], [7] is one of the most important recent developments. To this date,
higher order equations have not yet been classified from the point of view of
Painlevé integrability.

Perhaps surprisingly, proving the Painlevé property of an equation turns
out to be quite difficult (although if one assumes that singularities are de-
scribed locally by convergent power-logarithmic series, then it is usually easy
to check for the absence of movable branch points) and some of the classical
proofs for Painlevé equations have been subsequently challenged. See also
[8] and [9].

The Painlevé property, being shared by all solutions, must reveal a par-
ticular structure of the equation itself. We show in fact that P1 is equivalent
with an equation integrable by quadratures, in a region in the phase space
where the solutions y(z) are singular. The equivalence also has the implica-
tion that the solutions of P1 are meromorphic, and is a natural and rigorous
way to prove the Painlevé property.

We expect our technique to work for other equations having the Painlevé
property, as well.

The existence of a simple integrable singular normal form of P1 is tied
to the special integrability properties of this equation, and is not merely a
consequence of the fact that (2.1) “approximately equals” y” = 6y*> when
y,y',y" are large. Approximations near singularities are usually very unsta-



ble. For instance, the modification Y” = 6Y?2 4 z2 of P1 also seems to be
approximated by the equation y” = 6y? for large Y,Y”, especially if z is
small, but these two equations are not equivalent in mentioned regime. The
obstruction in the equivalence is the presence of “bad” logarithmic terms in
the Frobenius series of Y'(z) near its movable singularities, and the fact that
their absence in y(z) is stable under combinations of analytic and rational
transformations.

2 Main Results

We consider the Painlevé P1 equation

d*y 2
and show that there exists a transformation of the independent variable only
(i.e., of the form # = F(¢,u,u), y = w) which is an equivalence of (2.1) to
the elliptic equation

d?u

2

in regions of the phase space where the dependent variables are large.
The regularity of the transformation giving the equivalence appears more
clearly after making a rational transformation of the dependent variables of

(2.1) and (2.2)

_,dy dy\ ™
) _.3(%Y
n=—y U w=y (dw) (2.3)
and, respectively
v = _u_2d_u w=u’ du B (2.4)
B dt’ B dt '

Then (2.1) and (2.2), written in the new variables,
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‘% = w_1 — 6 — zwiv}
(2.5)
G = o (01— ) + 2zwiv}
and, respectively
v _ 2 _ g
o (2.6)
@ =7 w=3)

are analytically equivalent on polydisks centered at (z0,0,1/4) (zo € C ar-
bitrary). We note that the centers of the polydisks correspond to the point
at infinity for y and w. In remark 5 below we explain how this equivalence
translates into properties of the solutions of P1.

Proposition 1 There exists a map (t,v,w) — , (t,v,w) = (x,v1,w1), in the
extended phase space, of the form
z=7(t,v,w)
U1 = n(tvvvw) (27)
wy = B(t, v, w) = viwn(t, v, w) ">

which transforms (2.5) into (2.6) and has the following properties:
(i) , is holomorphic in a neighborhood of each point (x¢,0,1/4), zq € C.
Namely, for every zo € C there exists a polydisk A(xo)

1
A(:Bo):{(t,v,w)E(C3: lt —zo| <1, |v| <R, |w—1|<e} (2.8)

(R>1 and e < 1/4) where , is holomorphic and where its power series in v
has the form

tvw—t—l—Z'yktw (2.9)
E>5

n(t,v,w) —v—l—antw (2.10)
E>5

O(t,v,w) =w+ Y it w)* (2.11)
k>4



(it) , is a biholomorphism of A(zg) onto its image. Its inverse is holo-

morphic near (x9,0,1/4) and , ' = Id + O(v7).

(t1i) Let t — (v(t),w(t)) be a solution of (2.6) such that (t,v(t),w(t)) €
A(zg) fort in some disk [t —t1]| < €.

Then the function t — 7 (t,v(t),w(t)) is a biholomorphism of the disk
|t — t1] < € onto its image.

The proof of Proposition 1 is given in § 3.1.

The local equivalence of (2.5) and (2.6) stated in Proposition 1 is straight-
forwardly translated into a local equivalence of (2.1) and (2.2):

Corollary 2 There exists a map (t,u,u') — , (t,u,v') = (z,y,y'), in the
extended phase space, of the form

T =79 <t7 _3_2/7 ::%)
y=1u (2.12)

' \3 '
y = (=) = o [ () (622

where v,1n,1m are holomorphic on the polydisks A(zo) (xo € C) which takes
equation (2.1) into (2.2).

The transformation , is one-to-one on each domain

A(mg) = {(t,u,u’) ceC: |t—=zo| <1,

u® 1

-1
< R, T

!
u2

If u(t) is a solution of (2.2) such that the set T, = {(t,v(t),w(t)) ; |t —
t1] < €'} is included in A(zg), then the equality y(x) = w(t) defines a solution
of (2.1) for x € v(T,).

Remark 3 If p € C is a pole of u(t) then v(t) and w(t) have removable
singularities at p, with v(p) = 0 and w(p) = 1/4.

As a consequence of the equivalence of Proposition 1, the Painlevé prop-
erty of (2.1) follows naturally:



Proposition 4 The only singularities of the solutions of (2.1) are second
order poles.

Remark 5 The following description follows from the proof of Proposition 4.
If y(z) is a solution of (2.1), then whenever © is sufficiently close to a sin-
gularity of y(z), (z,y(x),y'(x)) falls in the equivalence region of (2.1) with
(2.2). In fact, the complex plane is divided into a union A of nonintersecting
balls — each containing a pole of y(x), where (z,y(z),y'(z)) € Domain(, ) -
and the complement of A, which is a connected set, where y(z) is analytic.

3 Proofs

3.1 Proof of Proposition 1

1) The proof proceeds in several steps.
p p p
Step 1: Denote by L the linear differential operator

LoD (2 0, 1y
_0t+ w 6v+v w—4 Oow

Since (cf. (2.7) and (2.6) dd% = é—z and dd% = %jﬂ), a straightforward

calculation shows that the transformation , maps (2.5) into (2.6) iff v and
N satisfy the equations

(L) +6(Ly) — (6 +w’vy) (Ly)* =0 (3.14)
and
n = Iy (3.15)

Step 2: There exists a formal series solution of equation (3.14) of the
form (2.9) where v, have convergent power series at w = 1/4

o) = Y eatt) (v ) 3.16)

with 7z, polynomials in ¢.



Indeed, substitution of (2.9) in (3.14) leads to the recurrence

Pk(w)7k+1 = hk(757 "'77k7t7w) (k > 4) (317)

where Py is the linear operator

zﬂww=m4cw—£f§§+(w—i)nw5%+gam (3.18)

with
fulwy = 12026+ 1) (2 ~) 3.19)
ge(w) = (k + 1) [2(2’; 3 24(kw+ 2 Lsek+2)|  (3.20)

Furthermore, hy(ys, ..., 7, t,w) is a polynomial in ~s, ..., vk

R (Y5 s Yoo By w0) = hg('yg,, s Yy by W) — h,lc('yk_77 Y w)  (3.21)

where (with xa(z) the characteristic function of the set A) we have

h2(757 "'77k7t7w) = wti{4}(k) + 126,5")%
F s+ 18 Z L;L; + 6 Z L:L; L

+ tw? {3Lk—4 +3 Z LiLj + Z LiLle}

i+j:k—4 1,-|—]—|—l:k—4

+ w2 {3 Z ’)’pLi + 3 Z ’)’pLiLj

i+p=k—4 i+j+p=k—4

1+j+H+p=k—4

with the convention that the summation indices satisfy ¢, 7,1 > 4 and p > 5,



where

Ly =1+ Z Ljo* (3.23)
k>4

1 2
L= at’)’kX[5,oo)(l<7) + 12 (w - Z) OwYit1 + (k4 1) (; - 6) Yet1 (3.24)
(3.25)

and

12 1 1
By (Vs vy iy W) = - (w — 1) kv + 24 (w — 1) Orw i + OuYr—1
(3.26)

We note that (3.17) gives 441 in terms of 7s, ..., % as a solution of a second
order linear inhomogeneous ODE. We are looking for functions 4441 holo-
morphic at (¢, w) = (z9,1/4). The point w = 1/4 is a regular singular point
of (3.17) and we need to show there exist analytic solutions there.
Substituting the formal series (3.16) and the expansions of f, gi and hy,

fi(w) =Y frn (w - i)n , ge(w) = gk (w - i)

n>0 n>0

k3

hi(y5(t, w), ..., i(t, w), t,w) = th,n(t) (w — 1)
in (3.17), we get, for n > 0,

[144n(n — 1) + nfio + grol erin = hin — > (Pfij + 0ki) Verrp
ptj=n,p<n

(3.27)

If for some k it is true that

144n(n — 1)+ nfro + gro # 0 (3.28)

for all n > 0, then the system (3.27) can be solved for vj41, recursively,
for any values of the right side of each equation. This is the case if k # 6.
Indeed,



fro = fu(1/4) = 24(2k +1) , gro=gr(1/4) = 4(k+1)(k—6) (3.29)
and the solvability conditions (3.28) reads
144n(n — 1)+ 24n(2k + 1) + 4(k+ 1)(k—6) # 0

which holds if k # 6.
We must look at the case k = 6 separately. The equations for s, s, v7

are
Py(w)ys — tw? =0 (3.30)
1 0? 20 0
1\ &° 24 0 0?
Pg(’w)’)’7 + 24 (w — Z) m’)’f; + (E — 84) a’)’G + @’)’5 =0
(3.32)

Direct substitution shows that the power series of 5 ¢ have the form

75=—$—%(w—i>+0<<w—i>z> (3.33)
Yo = N + 0 (w - l) (3.34)

Using (3.33) and (3.34) it follows that (3.32) also has power series solutions
v7 indexed by the arbitrary coeflicient 47 (there are infinitely many such
solutions because of the potential obstruction at &k = 6, see also the note
below).

By Frobenius’ theory of regular singularities, the series (3.16) converge.
Induction shows that the coefficients depend polynomially on the parameter
t. In steps 3 to 8 we show that the series v, (cf. (3.16)) converge in fact on
a common polydisk.

Note. The special form of P1 is essential in overcoming the obstruction
at k = 6. Generic perturbations of P1 lead to a & = 6 equation without
solutions, implying that no (integer) power series for v exists.

Step 3: A space of analytic functions. Consider the class H,(D) of holomor-
phic functions in the polydisk
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D={(t,w)eC*: |[t—zo| <1, |w—1/4 <€} (foreec (0,1/4))

which depend polynomially on ¢ and are continuous in the closure D of D.

It
P(t,w) = Z¢j(w) (t —20)’ € Hy(D)

then we define

|||¢|||¢=Z|I¢j(w)|| , where |[| = sup |¢;(w)] (3.35)

lw—1/4|<e

We note the following estimate of {—derivatives

118111 =Y llpi(w)l] < nlllp]] (3.36)

=0
and that multiplication is continuous:

[ebagpal[| < Wbl [[]32]]]

The usual sup norm on D is estimated in terms of the norm (3.35) by:

sup [¢(t, w)| < |[[3]]] (3.37)
(t,w)eD
Thus the completion H,(D) of the space H,(D) in the norm |[[|-[|| is contained

in the space of the holomorphic functions on D, continuous on D.

In the following Const. denotes constants which are independent of k, C. €, R
and zo (C is defined in Step 8 below).

Step 4: For k> 1, (3.17) can be written in the form

Yet1 = NeYetr + bk (3.38)

where by, depends on s, ..., v, t and w and with Ny, a linear operator satis-
Tying

Ny H,(D) C Hp(D) and

11



||[Niwpl]| < Const.eag|l[4]]] (3.39)

for all b € H,(D), where a. = (1/4 —¢)™L.
It is convenient to rewrite (3.18), (cf. (3.19), (3.20), (3.29)) as

P, = Ay, + Sk

where

A, =144 ! 2a—2+24(2k+1) . i+4(k+1)(k—6)
b T4 dwr Y1) bw

and
= (1= 7 ) Ustw) = £e1/4)] 5+ lvl) — u(1/4)]

Equation (3.17) becomes

Arvisr = b — Seyesa (3.40)

The equation Axy) = 0 has two independent solutions (w — 1/4)*? with

ap=1—k/6 and ay=-1/6—Fk/6

In order to write (3.40) in integral form, we interpret it as a linear inho-
mogeneous equation, with the inhomogeneous part by — Siyiy1. Then the
solutions -y, satisfy

Ye+1 = Br(le — Sivet1) (3.41)

where Bj, is the operator

Bi(¥)(t,w) = %/0 (3_1_0‘1 — 3_1_0‘2) P(t,w,) ds (3.42)

where

= A (3.43)
w, =8| w 1 1 .



The solutions of (3.40) satisfy the equation (3.38) where
Npp = —By, (Sktp) (3.44)
and by, as a function of (£,w), is given by
by, = By, (hs) (3.45)

Let ¥ € H,(D). Integrating in (3.44) by parts the term containing Oy Yr+1
we get

(Nptp)(t, w) —@/ (s, w)p(t, ws) ds (3.46)
where

Pr(s,w) = (a1 7% — apsT ) [fr(w,) — fr(1/4)]
(57— 7)) [ (w — 1/4)s fr(ws) + gr(w,) — gr(1/4)]

Direct estimates on (3.19), (3.20) give for |w —1/4| < e < 1/4

| fr(w) — fr(1/4)] < Const.kea, (3.47)
| fo(w)| < Const.ka? (3.48)
|gr(w) — gr(1/4)] < Const.k*ea? (3.49)
Also,
1
/ |y 8717 — @y 72| ds < Const. k™t (3.50)
0

Therefore, from (3.47) to (3.50) we get
1
/ |pr(s,w)| ds <Const.ea? (3.51)
0

which proves (3.39).
Step §: For k > 7 the functions Ouyri1 satisfy an equation of the form

Ouw Y1 = Nig(Ouwitr) + Ni (F41) + by (3.52)

where Ng are linear operators such that

13



le Hp(D) CHp(D) (5 =1,2) (3.53)
1 N3p[[] < Const.eal] ]| (3.54)
1N []] < Comst.a?| [ (3.55)

for all ¢ € Hy(D).
Indeed, differentiation with respect to w in (3.41) yields
1 1
aw’)’k-l—l (t7'w) = ﬁ/ (S_al - S_a2) aw (hk - Sk’)’k-l—l) (t,ws) ds (356)
0

and (3.52) follows with

(NE)(t0) = g5 [ bttt (3.57)

where

Pp(s,w) = (as™ — ars™™) (fr(w,) — fu(1/4))
— (3_0‘1 — 3_0‘2) (gk(ws) — gk(1/4))

and

1 1

(le¢)(t7w) = _ﬁ : (3_a1

— 3_0‘2) G, (W) (¢, ws)ds
From (3.56) we get
b, = By (i) (3.58)
where B} is the linear operator
1 IR
Bi(¥)(t,w) = — (w — = / (als_l_o‘l — azs_l_”) P (t,w,) ds(3.59)
168 4 0
The estimates (3.54) and (3.55) are straightforward.
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Step 6: Y(t,w) is a polynomial in t, of degree at most (k — 1)/4.  The
proof is by induction on k. Note first that the degree in ¢ of any holomorphic
solution of (3.17) cannot exceed the degree of the inhomogeneous term hy.
Hence (cf. (3.30)) the degree in ¢ of 5 is at most 1.

Assume by induction that deg,y; < (7 —1)/4if 5 < j < k. Then, (cf.
(3.23)) deg,L; < deg,yj+1 < j/4 for 5 < k — 1 and we have (cf. (3.21))
deg,hy < k/4.

Step 7: Estimates of sums. Given § < 1 there exist constants Cy,Cy > 0
such that for all integers n > 1

n P < Co(l1—=pB)2—p)...(n— B)/n! < Cyn™" (3.60)
and (8 =3/2)

n73? < —Cy(1—3/2)(2 — 3/2)...(n — 3/2)/n! < Cyn 3/ (3.61)

These elementary Gamma function inequalities imply that given # < 1, there
15 a constant Cy > 0 such that for all &

Z ’I:_'Bj_'g S Cok1—2,3 (362)
itj=kyi,j>4
Yoo PP < ok (363)
v +Hl=k,5,0>4
Z g3 < Opk1/? (3.64)
ati=k,j>4,9>5
Z q_3/2i_1/2j_1/2 < C, (3.65)
qtiti=k,,j>4,¢>5
Z g%V < R (3.66)

Step 8: There exist constants € € (0,1/4), C,R > 1 such that v, € H,(D)
and

Il < €572 R7= (3.67)
1103 lll < €2 R~ (5.68)

for all 3 >5.
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The proof is by induction. Suppose that vs,...,7 € H,(D) and that
(3.67) and (3.68) hold for j =5, ..., k; we prove these properties for j = k+1.
The plan of the proof is as follows:

We estimate the functions: (1) hy (defined in (3.21), (3.22) and (3.26));
(2) by (defined by (3.45)); and (3) b;, (defined by (3.58)). (4) We obtain
inequalities for 11 and J,Yx11; and finally (5) we choose the constants C, R
and e.

(1) Estimating the terms of kY and hj:

(a) From the induction hypothesis, (3.36), (3.23) and the fact that |w —

1/4| < e, we see that

L[] < degyys |[wll] +12€[[|0uyira[[] + (€ + 1)(2ac + 6)[[yia]l]
< Const. K, Ci~*/?Ri~* (3.69)

for ¢ <k — 1, where
K. =1+a. (3.70)
(b) By (a) and (3.62)

1) LiLjl|| < Comst. K2 > C*%~/?j7/*R** < Const. K2C*R*®
i+j=k i+j=k

(c) By (a) and (3.63)

1Y LiL Ll < Const. K2 Y C3U/2j 12712 ph12 <
i+jH=k it+j+l=ki,j1>4
Const. K2C3L'/2RF—12

We finally have

(@) w? 3y pmpos WoLill| < Const. K, C?k7/2RF1

(e)  Iw* Xy jipmr_a WwLiLjlll < Const. KZCPR*17
and

(f) |||'w2 Zi+j+l-|—p:k—4 YpLiLi L[| < Const.KSC4k1/2Rk_21
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Combining (a)...(f) we get
|[|h&]|| < Const.®C(k + 1)Y/2RF* (3.71)
where, using that R, K., C and k are at least one and € < 1/4 we get
® = (1+ |zo|R7®) (K.R'+ K.CR™* + K}C?R™® + K2C°R™*?)

(2) In view of (3.71)

1 ' —1-a —1-a
[[bx /1| = || Bre(Pa) ||| §—|||hk|||/ (s717 —s717%2) ds
168 0

< Const.®C(k + 1)3/2RF* (3.72)

(3) The function B}(ht)(t,w) is regular at w = 1/4 since

1
/ (als_l_o‘l - azs_l_”) ds =0
0

Its maximum over the disk |w — 1/4| < € is then attained for |w — 1/4| = ¢
and

1
1Bx11] = 1B (he)|[| < Const. ||| 6_1/ e M
0
< Const.®e ' C(k + 1)_1/2Rk_4

(4) In this part of the proof we restrict the values of the parameters e, R and
C (conditions 1 to 4); the consistency of the conditions is shown in part (5).
If A, := Const.ea? < 1 (Condition 1) then, using (3.39), it follows that the
operator Ny extends continuously on H,(D) and is a contraction there. Thus
I — Ny is invertible. The function 11 = (I — Ng) 1oy (cf. (3.38)) is analytic
in D, continuous on D. Since (by step 6) 711 is a polynomial in ¢, it follows
that 411 € Hp(D).
In view of (3.39) and (3.72) it follows that

el = 112 = Na) 7Pl < (1= Ae) T[] <
Const.®(1 — \) " C(k + 1)"*2RF* (3.73)
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The induction step for 41 follows provided that Comst.®(1 — A.)™' < 1
(Condition 2). The estimate of Jyyr41 is similar: step 5 and (3.73) imply
(cf. (3.57))

1INl | < Comst.aSC(k + 1)/ Rt
If \! = Const.ea? < 1 (Condition ) then (cf. step b)
10w yis1]]| < Const.(1 — AH)71@L C(k 4 1)"Y2RF
where

Pl = a:’k_l +eldp

The induction step follows if Const.(1 — A})"*®* <1 (Condition 4).

(5) Proving that conditions 1 through 4 can be satisfied. Let ¢ be small
enough so that conditions 1 and 3 hold. It is convenient to impose CR™* <1
(Condition 5).

Then conditions 2 and 4 are implied by an inequality of the form

Ch(e) <k‘1 + (R CRY 1+ |x0|R_3)> <1 (3.74)

with C;(¢) depending on e only. If k is larger than some k; (€), then Cy(e)k™ <
1/2. C can now be chosen so that the induction hypothesis ((3.67) and (3.68))
holds for j = 5, ..., k1(€). Finally, for large enough R, condition 5 and (3.74)
are satisfied.
Step 9: The series (2.9) converges for (t,v,w) € A(zo) (¢f. (2.8)). This is
an immediate consequence of (3.67) and (3.37).

Part (ii) follows from the fact that , is a small perturbation of the identity:
, = Id+v* ; with , ; holomorphic on A(z), thus of the form Id+ h(t,v,w)
where h is analytic, h(0) = 0 and ||D(h)]] < a < 1 (for large enough R).

Thus , ~! exists and is analytic [4]. Part (iii) follows similarly. |l

3.2 Proof of Proposition 4

Let y(x) be a solution of (2.1), analytic at some point a € C. The approach to
the proof is the following. If B(r) is any open disk where y(z) is meromorphic,
we show that y(z) is meromorphic in a neighborhood of the closure of B,
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as well (implying meromorphicity in C). This is shown by finding a subset
B.(r) of B(r) and a p(r) > 0 such that:

(1) each @ € B.(r) is the center of a disk of radius at least p(r) where
(2.1) and (2.2) are equivalent (where thus 1/y is analytic)

(i) y and y" are uniformly bounded (and analytic) in a neighborhood of
the closure of B(r)\B.(r).

Consider thus an open disk B = B(r) C C centered at a, of radius r,
such that y(z) is meromorphic in B.

Let

w, — —

Aq(zo) = {(w,vl,wl) €C: |z —=zo| <&, |u] <87,

1
5
i<

where ¢, S and § are small enough so that the closure of Aj(z) is contained
in, (A(zg)). Let Al(wo) be its representation in (z,y,y’).

Let z* € 0B. Let zg € B such that |¢* — z¢| < ¢ and y(z) is analytic at
To.

We show that either (z,y(z),y'(z)) € Al(wo), for all z in a neighborhood
of «*, thus y(z) is meromorphic at «* (cf. corollary 2) or else there is a path
in B, ending at z*, on which y(z) is uniformly bounded. In the latter case,
y(x) is analytic at z* as follows from lemma 6.

Lemma 6 Let y(z) be a solution of (2.1). Letl : [0,1] — C be a path,
continuous on [0,1], smooth on [0,1), of finite length, and such that y(z) is
analytic at each point on 1[0,1) and uniformly bounded on 1[0,1). Then y(z)
is analytic at I(1).

The proof is given in §3.3.

Consider the ray Ry starting at zo through z*. If z, 2" € Ry we write
¢ <z’ when |z — xo| < |2’ — zo].

Integrating (2.1) we get

€T

(y)* = 4y° + 22y — 2/ y(s)ds + C (3.75)

Zo

Let €; € (0,1) be small.
In the following, Const. denotes positive constants, which may depend
only on zg, y(zo),y'(z0),7,£, S and § but not on €.
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If |y(z)] < ;' in RgN B we define [ to be the segment [z, z*]. Otherwise,
let z; be the least = in Ry N B with respect to < such that |y(z,)| = €;'. We
have

(y/)z = 49° + 20y — 2/ y(s)ds + Cq (3.76)

where

|C1| <|C|+ 2|20 — 21| sup |y| < |C|+ 26t < Const.e;?

xz€[xo 1]

for small €;. Let y; = y(z1) and y; = y'(21). Then

12
2 C
yL?) — 1‘ = &jl < Const.é2 (3.77)
4yy 4yy
so that
3
Y1
— — —| < Const.
WER onst.e;
Also, from (3.76),
!
y_; < Const.e}/2
Y1

Thus (21,y1,¥1) € Al(:no) if €; 1s small enough.

Remark 7 y(z) is meromorphic in a neighborhood of the closure of the disk
De, = A{z; |z — 24| < 46}/2}.

Counsider the solution of (2.2), which corresponds to y(z) through , :
u(t) = y(z) (cf. corollary 2), defined in a neighborhood of ¢;, where

(tlaulvull) = _1(517173/173/1)'
The change of variables w = 1/Q? in (2.2) gives, after one integration,

(@) =1+K.Q° (3.78)

To estimate the constant K; we use the fact that the map , ~! is close to the
identity:
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4 ro.3
y' ¥y
() (‘y—y—)]
with 6; holomorphic for (z,y,y’) € . <A(:B0)> (thus bounded on Al(:no)).
Then

1
|K1|:Z

With the substitution Q(t) = Q(t1) + (t — t1) + U(¢), (3.78) can be written

in integral form as

12 3 -1
w;” —4uy| < Const.e;

_ K K1Q(3)6 L
U(t)_/tl 1+\/mds ._J<U>(t) (3.79)

A straightforward calculation shows that the operator J in (3.79) is a con-
traction in the sup norm over the closed disk D'y, = {t : |t — t1] < 861/2}, in
the ball |U|| < € (if € is small).

Furthermore, (¢,u(t),u'(t)) € A(xo) for t € D'y, (and small ;). Hence,
from Proposition 1 (iii), y(z) := wu(¢) is a solution of (2.1) if ¢ € D'y, (the
same solution as in the beginning of § 3.2).

To estimate the domain in the z-plane where y(z) is defined by the equiv-
alence, we rely on the fact that , is close to the identity:

u’(t) u(t)3> ( u’1 u:{’ ) ‘
z x ) t’ 9 ) t 9 9 Z
| 1| ‘ ( u(t)2 u’(t)z ! 'UJ% 11,/12

w'(t) |”
u(t)?

Thus, taking €; small enough, remark 7 follows.

> |t — 1| — Const.ei/2

|t —t;] — My max

Remark 8 y(z) satisfies the estimate

ly(z)] < 71 for |z — 21| = de}?

Proof. Indeed, since y(z) = u(t) = [Q(t1) + (¢t — t1) + U(¢)]"? (note that
Q(t1)"% = wy), we have y(z) = [Q(t1) + (z — =1) + Y (z)]~? where
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/

00~ [S0T t, 000,00 + [Z—%rmn,v(tl),w(tl))‘

<é&+ Const.ei/2

since 7, is analytic on A(zg), therefore bounded on , = (A;(zo)).

-2
) < 61_1
which proves remark 8.

If 2 € D,, then, by remark 7, proposition 4 is proved. Otherwise, let
x], s, with 2] < zs, be the two points of intersections of the circle 9D,,
with Rg. Thus z} < z, < z2 < z* and |y(z2)| < €;'. The construction in
step 1 is now repeated with z, instead of zo and the same ¢;: if |y(z)] < "

Thus, for « such that | — ;| = 461/2, and small €,

()

[y()] < 1@1 + (& — a1)|” (1 - ‘#

on [zs, ™) then [ is defined as the segment [z5, *]. Otherwise, let 3 be the
least point w.r.t. < on (zs,z*) such that |y(zs)] = ¢'. As before, y(z) is
meromorphic in a neighborhood of D,, and satisfies |y(z)| < €' on 9D,,.
Then, either * € D,,, in which case the Proposition is proved, or else, if
zy < x4 are the two points of intersection of 0D,, with Ry then z] < z; <
Ty < ¢3 < x4 < =*. We take the path [ going along Ry, from z, towards z*,
avoiding the disks D,,,,, by going on the upper semicircle of dD,,,,,.
After a finite number of steps the construction stops since |€o;41— 21| >

1/2 1

|Taj — ®aja| = 4e

Lemma 9 Let y(z) be a solution of (2.1), which is analytic at xo. Then the
radius of analyticity is at least

min {[y(zo)| 7%, [y (20) /2|72, y(0)® + 20 /6] 7/}

Proof. Straightforward estimates of Taylor series coefficients; for details see

[10. N
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3.3 Proof of Lemma 6
Suppose |y(z)| < M for « € [[0,1). Let « = I(s),s € [0,1). Equation (2.1)
can be integrated once and it yields, for the solution y(z)
y'(2)? = 4y(z)® + 2zy(x) — 2/ y(z') dz’ + Co (3.80)
1[0,3]

Thus sup{|y’(z)| : # € 1[0,1)} = 2M; < co. By Lemma 9, for any = € 1[0, 1),
y(x) is holomorphic in a disk centered at = of radius at least

~1/4
p(w):min{M_1/2,M1_1/3, (M2—|- max]|:13|/6> }

z€l[0,1

Therefore y(z) is analytic at I(1). 1§
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