
Math. Z. 172, 273-280 (1980) rvlathematische 
Zeitschrift 

�9 by Springer-Verlag 1980 

Classification of Certain Compact Riemannian Manifolds 
with Harmonic Curvature and Non-parallel Ricci Tensor 

Andrzej Derdzifiski 

Mathematical Institute, Wroclaw University, 50-384 Wroclaw, Poland 

1. Introduction 

For  any Riemannian manifold, the divergence fiR of its curvature tensor R 
satisfies the well-known identity fiR =dS, i.e., in local coordinates 

Vi Rhijk = VkShj-- VjShk, (1) 

S being the Ricci tensor. While every manifold with parallel Ricci tensor has 
harmonic curvature, i.e., satisfies fiR=O, there are examples ([3], Theorem 5.2) of 
open Riemannian manifolds with fiR=O and VS+O. In [1] Bourguignon has 
asked the question whether the Ricci tensor of a compact Riemannian manifold 
with harmonic curvature must be parallel. 

The aim of this paper  is to give examples (see Remark  2) answering this 
question in the negative. All our examples are conformally flat (Corollary 1). 
Moreover, we obtain some classification results, restricting our consideration to 
Riemannian manifolds with fiR = O, VS + 0 and such that the Ricci tensor S has 
at any point less than three distinct eigenvalues. Starting from a description of 
their local structure at generic points (Theorem 1), we find all four-dimensional, 
analytic, complete and simply connected manifolds of this type (Theorem 2). 
They are all non-compact,  but some of them do possess compact  quotients. Next 
we prove (Theorem 3) that all compact  four-dimensional analytic Riemannian 
manifolds with the above properties are covered by S 1 x S 3 with a metric of an 
explicitly described form. 

Throughout  this paper, by a manifold we mean a connected paracompact  
manifold of class C ~ or analytic. By abuse of notation, concerning Riemannian 
manifolds we often write M instead of (M,g) and @ , v )  instead of g(u,v) for 
tangent vectors u, v. 
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2. Preliminaries 

The results and arguments of this section are similar to those of I~lie Cartan's 
work on isoparametric surfaces (cf. [2]). The author is obliged to Professor 
James Eells for pointing this out to him. 

Let M be a Riemannian manifold of class C ~~ or analytic. Consider a 
Codazzi tensor A on M, i.e., a symmetric (0, 2)-tensor field, satisfying the Codazzi 
equation (V~A)(v, w)=(V~A)(u, w) for arbitrary tangent vectors u, v, w. In view of 
(1), a Riemannian manifold has harmonic curvature if and only if its Ricci tensor 
is Codazzi. 

Define the integer-valued function E A on M by EA(X)=(the number of 
distinct eigenvalues of Ax) and set M A = { x a M :  E A is constant in a neigh- 
bourhood of x}. Clearly, M A is an open dense subset of M. In each connected 
component of MA, the eigenvalues of A are well-defined and everywhere distinct 
differentiable (resp. analytic) functions, called in the sequel the eigenfunctions of 
A, and the eigenspaces of A form mutually orthogonal differentiable (resp. 
analytic) distributions (eigendistributions of A). We have 

Lemma 1. Let A be a Codazzi tensor on a Riemannian manifold M. Then, in each 
connected component of M A, 

(i) I f  two (locally defined) vector fields u,v satisfy Au=2u ,  A v = 2 v ,  i.e., 
belong to the eigendistribution V z corresponding to the eigenfunction ,t of A, then 

A ~7u =.~ You + (v;t) u -  (u, v) V.~. (2) 

(ii) Given distinct eigenfunctions 2,1~ of  A and (local) vector fields v~ V~, u~ V u 
with lul = 1, we have 

v# = ( # -  2) ( [7, u, v). (3) 

Proof. (i) For any vector field w, the Leibniz rule implies 

(AV.u ,w)  =(V~(; .u)-(VvA)u,w)=((v;Ou+ 2 V~u,w)-(VwA)(u,v) 

and 

(V~A)(u,v)=w~Au, v ) - ~ G u ,  A v ) - - ( A u ,  G v )  

=(w.~)(u,v) + ; ~ [ w ( u , v ) - ( G u ,  v ) - ( u ,  Gv)] 
= ( (u ,  v) V2, w), 

as required. 
(ii) Clearly, (u, v )=0 ,  hence the Codazzi equation yields 

( ~ -  ,t) (V.u, v) = - ;~<V.u, v) - ~ ( u ,  v.v) = - A (V.u, v ) -  A(u, V.v) 

= (V,A)(u, v) = (VvA) (u, u) = v fAu ,  u)  = v#. 

This completes the proof. 

Lemma 2. Given a Codazzi tensor A on a Riemannian manifold M, we have, in 
each connected component of M A, 
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(i) The eigendistributions of A are integrable and their leaves are totally 
umbilic submanifolds of M. 

(ii) Each eigenfunction 2 of multiplicity greater than one is constant along the 
leaves of the corresponding eigendistribution Vz. 

Proof. Given an eigenfunction 2 with dim V z > 2 and a fixed (local) unit vector  
field veV~, choose a local unit field u~V;. with ( u , v ) = 0 .  By (2), v2=(2V~u 
+ ( v 2 ) u - ( u , v )  V 2 , u ) = A ( V u ,  u)=~V~u,2u)=O. This implies ( i i ) i f  we know 
that  the eigendistributions are integrable. To  prove this, consider u, v e Vz and 
assume, without  loss of generality, that  dim V;>2. Hence  u 2 = v 2 = 0  and (2) 
yields A[v ,u]=A(Vvu-Vuv)=2[v ,u] ,  i.e., [v,u]eV~, as required. In order  to 
show that  the leaves of Va are totally umbilic, fix a local unit vector field u ~ Vz 
and a vector field v normal  to Va. The second fundamental  form of the leaves of 
Va with respect to v is given by bV(u, u ) = -  (Vuu , v). Asssuming, without  loss of 
generality, that  ve  V,, # ~ 2 ,  we obtain from (3) b~(u ,u)=(#-2)  -1 v2, i.e., b~(u,u) 
is independent  of the unit vector  u tangent  to the leaf at x, which completes the 
proof. 

For  a later application, we also need 

L e m m a  3. Let A be a Codazzi tensor on an n-dimensional Riemannian manifold 
M, n> 3. Suppose U is a connected open subset of M A such that trace A is 
constant in U and VA =~ 0 at some point of U. I f  A has exactly two eigenfunctions 
2, # in U, and if dim Vz__<dim V~, then dim Vz= 1, the integral curves of Vz are 
geodesics and every leaf of V, has constant mean curvature. 

Proof. Given a vector  field u e  Vu, (ii) of L e m m a  2 yields u # = 0  and 

u2 = (dim Vz)- i u [ trace A - (dim Vu) ~] = 0. (4) 

If we had dim V~ > 2, then, by (4) and (ii) of L e m m a  2, 2 would be constant  and 
hence so would be #. Fo rmu la  (2) applied to any vector fields u, we  Vz (resp. 
u, w a V,) yields then Vwu e Vx (resp. VwU e Vu), so that  the leaves of both  eigendis- 
tr ibutions would be totally geodesic. Suppose now that  u ~ V;. and w e Vu, i.e., w is 
normal  to V~. Hence so is V,w by the total  geodesy of Vz. Thus, V, w e V ,  
whenever w e Vu, for any u, i.e., Vu is a parallel distribution. The local de Rham 
decomposi t ion  theorem implies VA = 0 in U, which is a contradiction.  Therefore  
dim V z = 1. 

Now fix a local unit vector field v e Va. Clearly, (V~v, v ) =  0 and, in view of (3) 
and (4), (Vov, u )=O for any u e  Vu. Hence  Vov=O, i.e., Vz is geodesic. Finally, the 
mean curvature  of the leaves of V, is given by ~ = ( 2 - # ) - z v #  (cf. p roof  of 
L e m m a  2). Next, for a vector field u e V,, (4) implies u ~ = ( 2 - # )  luv#,  while uv# 
= [u, v] # and ([u,  v], v) = - ( V~u, v) = (u, V~v) = 0. Thus, [u, v] e V,, which yields 
[u, v] # = 0 by (ii) of L e m m a  2. This completes the proof. 

3. The Local Structure 

It will be convenient  to consider the following construct ion (cf. [5]). Let  (M, h M) 
and (N, h N) be Riemannian  manifolds, F:  M ~ 1R a positive function. Define the 
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F-warped product M •  of M and N to be the Riemannian manifold (M • N, 
h M • hN) with 

( hM • F hN)(x, y)(U 4- X,  v 4- Y) = hff (u, v) 4- F (x) :v h,, (X, Y) 

for u, v ~ TxM, X,  Ye  TyN. 

Remark 1. Since we are particularly interested in warped products M X F N  with 
dim M =  1, it is useful to write down the local coordinate expressions for some 
geometric quantities in this case. In a suitable product chart t = x ~  1, . . . , x  ~-1 
for M x N we have, putting h=h  N, g = h  u xlch N and q = l o g F ,  go0 = 1, goz=0, &j 
=eqhi j ,  No _ p o  p i  = 0 ,  0 , Fi _ ~  t.~i i i " o o - - * o i - - * 0 o  F/j = - - l e q q  hij , " o j - 2 q  ~j, Fj~-Hjk. Here and in the 
sequel i , j ,k  run through {1 .. . .  , n - l } ,  the prime stands for d/dt, while the F's 
(resp. H's) are the Christoffel symbols of g (resp. of h with respect to the chart 
x ~, . . . ,x  "-~ of N). Furthermore, denoting by V and S (resp. by D and p) the 
Riemannian connection and the Ricci tensor of g (resp. of h), we have 

and 

l m n  r 2 , ,+ ,  ,,2- S ~ 1 7 6  4 k q Iq ) 3, Soi=O, 

1 q l/ S i j = P i j - ~ e  [2q + ( n -  1)(q') 2] ho, 

1 - n  
- [q'"+q'q"], VoSi0 = ~Soo =0, V~176176 2 

V o Si~ = - q' p~j-  �89 e q [q'" + (n - i) q' q"] h~j, 

2 - n  , ,, 
VISoj= - - l  q' P i j 4 - T e q  q q hij, 

(5) 

(6) 

Vk Sij = Dk Pi~. (7) 

Lemma 4. Let M be an interval of IR, considered with its standard metric, 
F: M - + I R  a non-constant positive C ~ function and N an (n-1)-dimensional 
Riemannian manifold, n >= 3. Then the following conditions are equivalent: 

(i) M XFN has harmonic curvature tensor, 

(ii) N is an Einstein space and the positive function qg=F ~/4" M -+ ]R satisfies 
the ordinary differential equation 

ntc qy, ~pl -~1~ _ p 
4 ( n -  1) - q) (8) 

for some real number p, tc being the constant scalar curvature of N. 

Proof. Let M •  have harmonic curvature. If n=3,  then (1) and (7) yield Dkpij 
=Djpik , which implies that the 2-dimensional manifold N has constant curva- 
ture. For  n>=4, (1) and (6) together with the non-constancy of q imply that p is a 
multiple of h, Therefore N is Einstein. Denoting by ~c its constant scalar 
curvature, it is clear from (1), (6) and (7) that M •  satisfies 6R =0  if and only 

i f q ' " + 2 q ' q " +  K_ =0, i.e.,q" n ,2 ~c 4 n lq ' e -q  +4(q )  - n - l e - q = - P n  for some realp, This 
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is equivalent to (8) with (p = e "q/4. The implication (ii) --, (i) is now obvious, which 
completes the proof. 

Remark 2. Lemma 4 already gives examples of compact Riemannian four- 
manifolds with harmonic curvature and non-parallel Ricci tensor. To this end, 
consider M x v N ,  M being the unit circle (instead of an interval) and N a 
compact 3-manifold of constant sectional curvature + 1 (i.e., •=6), where, for 
instance, F ( t ) = 2 + c o s t .  The Ricci tensor is not parallel since VoSoo4=O. Exam- 
ples of this type are contained in a more general classification given in Sect. 4. 

We are now in a position to prove the following local structure theorem. 

Theorem 1. Let (M,g) be an n-dimensional Riemannian manifold with harmonic 
curvature tensor, n> 3. Suppose x is a point of  M such that (VS)~4=O and x ~ M s ,  
Es(x)=2,  i.e., in a neighbourhood of x, the Ricci tensor has exactly two eigen- 
values. Then 

(i) A certain neighbourhood of x is isometric to a warped product I x FV, I 
being an i n t e rva lo f  IR, V an (n-1)-dimensional Einstein space with scalar 
curvature ~: and F: I---, I R a  non-constant positive function such that (p=F n/4, 
viewed as a function of  the arc length parameter, is a solution of  (8). 

On the other hand, given an (n-1)-dimensional Einstein space V (n>= 3) with 
scalar curvature tc and a positive function F on an interval I, such that (p = F  "/4 
satisfies (8), the warped product I x v V has harmonic curvature. 

(ii) If, moreover, n = 4 and (M, g) is analytic and geodesically complete, then, in 
1r 

the notations of  (i), V is a space of  constant sectional curvature K = ~  and F is 
given by one of the following formulae 

F ( t ) = K t 2 + A t + B  (9) 
with 

p=0 ,  K > 0 ,  B>0 ,  A 2 < 4 K B ,  (10) 
o r  

F(t) = - 2Kp -1 + A exp ( t ]~)  + B exp ( -  t ] ~ )  (11) 
with 

p>0 ,  A>0 ,  B>0 ,  K2<p2AB,  (12) 
or  

F( t )=  - 2 K p  -1 + A c o s ( t l / ~ ) +  B sin(t l / ~ )  (13) 
with 

p<0 ,  K > 0 ,  p2(A2+B2)<4K2,  (14) 

p being the constant occurring in (8) (where (p = F). In particular, F has a positive 
analytic extension from I to the whole of  IR. 

(iii) Conversely, if N is a 3-dimensional manifold of  constant sectional curva- 
ture K and F is given by (9) (resp. (11) or (13)) with (10) (resp. (12) or (14)), then the 
warped product M = I R  XFN has harmonic curvature, its Ricci tensor S is not 
parallel and the number of  distinct eigenvalues of  S does not exceed two at any 
point. 
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Proof (i) By Lemma 3 and (i) of Lemma 2, the tangent bundle of a neigh- 
bourhood of x splits as the orthogonal direct sum of the eigendistributions of S, 
i.e., of a geodesic line field V z and an integrable codimension one distribution V, 
with totally umbilic leaves, each of constant mean curvature. In a suitable local 
chart x~  1 . . . .  ,x  "-1 with O/Ox~ O/OxiEV~ (i,j range in the sequel over 
1 .. . .  , n - l ) ,  we have g01=0. Since V~ is geodesic, F~o=0, i.e., 0ig0o=0. As Vu is 
totally umbilic, the second fundamental form of its leaves is a multiple of the 
metric, that is, 0 -F~j g0o =-~gu, ~ being the mean curvature function, which yields 
Cqogij=2goo 1 ~gij. The constancy of ~ along V~ says now that ~ogu(x ~ . . . ,x  " - I )  

X n - 1) =f(x~ ~ for some function f of a real variable. Choosing a 
function q with q ' = f  we have Oo(e-qgu)=0, i.e., gu(x~  
eq(~~ , . . . , x  "-~) for some h u. Thus, a neighbourhood U of x can be chosen 
isometric to a warped product I xvV, I being an interval of 1R, so that our 
decomposition of TU corresponds to the product decomposition of T(I x V). 
The function F is not constant, for otherwise U would just be the Riemannian 
product of I and V, the latter being an Einstein space, since its Ricci tensor has 
only one eigenvalue. Consequently, we would have VS=O in U, which is a 
contradiction. Our assertion is now immediate from Lemma 4. 

(ii) The three-dimensional Einstein space V is a space of constant curvature 

K = ~ .  On the other hand, for n = 4  equation (8) takes the particularly simple 

form 

F " - p F = 2 K  (15) 

and its solutions are given by (9), (11) or (13) with p=0 ,  p > 0  or p<0 ,  
respectively, A and B being arbitrary. 

If 21, ..., 24 denote the eigenvalues of S at any point, the second elementary 
symmetric function ~2(S)= ~ 2a2 p is well-defined and analytic everywhere on M. 

a</~ 
Using the identification U = I • F V as in (i) and the notations of Remark 1, we 
have 

az(S)= 3 F-'~[_p2 F 4 -  p K F  3 +�88 2 F 2 - 2K2 F z +K(F ' )  2 F--~(F')~]. (16) 

For a fixed y~ V, the curve t~t~-o(t ,y)a U is a geodesic (cf. Remark 1). 
Therefore the right-hand side of (16), being a priori just an analytic function on 
I, is equal to the composition of o2(S ) with a geodesic of M. Hence it must have 
an analytic extension to IR, as M is complete. This implies that for any t e lR 
with F( t )=0,  we have F ' ( t )=0.  The solutions of (15) for which such a t exists are 
given by (9) with A Z = 4 K B  (resp. by (11) or (13) with p 2 A B = K  2 or p2(A2+B2) 
=4Ka).  Substituting q = l o g F  into (6), one sees easily that these conditions 
imply VS=O, which is a contradiction. Therefore F has no zeros in IR, i.e., F > 0  
everywhere. According to whether p is zero, positive or negative, this is 
equivalent to (10), (12) or (14), as required. 

(iii) Since F is a solution of (8) with n =4, Lemma 4 implies harmonicity of 
the curvature tensor of M. From (5) together with p u = 2 K h u = 2 K e - q g  u (no- 
tation of Remark 1) we obtain Es<2 everywhere. Computing VoSoo from (6) 
with q--log F, one sees that VS + O. This completes the proof. 
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Corollary 1. Let (M, g) be a four-dimensional analytic Riemannian manifold with 
harmonic curvature tensor. I f  the number of distinct eigenvalues of the Ricci tensor 
S does not exceed 2 at any point and S is not parallel, then M is conformally fiat. 

Proof By (i) of Theorem 1, M contains an open subset U isometric to I x vV, 
where I is an interval and V is a three-dimensional space of constant curvaturel 
It is easy to verify that for any such warped product the Weyl tensor W=0,  
which completes the proof. 

4. Global Classification Theorems 

Let MK, A,B, p denote the four-dimensional warped product manifold IR XFNK, 
where N K is the complete simply connected three-dimensional Riemannian 
manifold of constant sectional curvature K and the positive function F: IR ~ IR 
is given by (9) or (11) or (13), the real numbers K, A, B, p being respectively 
assumed to satisfy (10) or (12) or (14). 

Lemma 5. Let (M,g), (N,h) be complete Riemannian manifolds, F: M ~ I R a  
positive function. I f  F is bounded from below by a positive constant, then M • N is 
complete. 

Proof Suppose F>c>O. For a vector X ~  T(M • we have (g xeh ) (X ,X)>(g  
x ch)(X, X). Therefore the distance functions satisfy dg• Fh~dgxc h and our asser- 

tion follows from completeness of the product metric g x ch. 

Theorem 2. Let M be a complete, simply connected, analytic, four-dimensional 
Riemannian manifold with harmonic curvature and non-parallel Ricci tensor S. I f  S 
has less than three distinct eigenvalues at any point of (a non-void open subset of) 
M, then M is isometric to one of the manifolds MK, A,B, p as described above. 
Conversely, each of these manifolds has the properties just stated. 

Proof. It is immediate from Theorem 1 that a certain non-void connected open 
subset of M is isometric to an open subset of some MK, a,B, p. Moreover, 
MK, A,~, p is complete in view of Lemma 5. Our assertion follows now from the 
extension theorem for analytic isometrics ([4], p. 252) and (iii) of Theorem 1. 

Lemma 6. (i) For p > O, the Riemannian manifolds MK, A,B,p do not cover isometri- 
cally any compact manifold. 

(ii) For p < O, the set of all fixed-point-free, orientation preserving isometrics of 
MK,A,B, p is contained in the direct product G, • SO (4), acting on the underlying 
manifold IR x S 3 in the product manner. Here GpclR is the group of all trans- 
lations of IR leaving F invariant, i.e., Gp = 2zc(-p)--1/2 7~,. 

Proof From (5) together with pij=2Kh~j (cf. Remark 1) it follows that both 
natural distributions of the underlying manifold IR x N K are invariant under any 
isometry of MK, a,~,v, as they are the eigendistributions of the Ricci tensor. 
Therefore every isometry is a Cartesian product 0 x t / o f  a diffeomorphism of IR 
with a diffeomorphism of N K. The definition of warped product yields (0 x t/)* (g 
• XFoOrl*h, g and h being the metrics of IR and NK, respectively. Hence 
0*g=g,  FoO=zF and r l*h=z- lh  for some positive real number z. From (9), 
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(11) or (13) it follows immediately that r = l .  Thus, F is invariant under any 
isometry of MK, A,B,p, i.e., it projects to a function on every isometric quotient. 
The unboundedness of F when p > 0 implies now (i). Assume now that 0 x r/is a 
fixed-point-free and orientation preserving isometry of MK, A,B,p, p < 0 .  If both 0 
and t/ reversed the orientation, 0 x t/ would have a fixed point, since r/ would 
belong to 0(4) -S0(4) .  Therefore 0 is a translation and ~/~SO (4), which com- 
pletes the proof. 

Remark 3. Given a Ricci-flat manifold N of arbitrary dimension n - 1 ,  n > 3, 
there exist positive functions F: 1R ~ IR such that the warped products IR •  
have harmonic curvature and non-parallel Ricci tensor. These functions are 

given by F( t )=  [-A e x p ( t l ~ ) + B e x p ( - t l / p ) ]  4/~, A, B and p being positive real 
parameters (cf. Lemma 4 and proof of Theorem 1). However, none of these 
warped products admits compact isometric quotients. In fact, one can verify as 
in the proof of Lemma 6 that the unbounded function F is invariant under any 
isometry of IR • 

Given real numbers K, A, B, p satisfying (14), a positive integer m and an 
orientation preserving isometry Q ~SO(4) of S 3 = N  K, let us define the Rieman- 
nian manifold M = M K A B p m O as the quotient M = Mr; A B p/F. (2 p, F,. (2 p being 

. . . . . . . . . .  1/2 ' ' the infinite cyclic group of isometrics generated by ( 2 m ~ ( - p ) -  ,Q), in the 
notation of Lemma 6. It is clear that MK, A,B,p,,,,( 2 is a compact Riemannian 
manifold, diffeomorphic to S i x  S 3. By Theorem 2, it has harmonic curvature, 
while its Ricci tensor is not parallel and has less than three eigenvalues at any 
point. 

The manifolds MK, A,B,p,m, (2 have the following property of universality: 

Theorem 3. Let (M,g) be a four-dimensional compact analytic Riemannian ma- 
nifold with harmonic curvature. I f  the Ricci tensor of M is not parallel and the 
number of its distinct eigenvalues does not exceed two at any point of M, then M is 
covered isometrically by one of the manifolds MK, A,e,p,m, (2 defined above. 

Proof We may assume that M is orientable. Thus, M=MK, A,B,p/F, where, in 
view of Theorem 2 and Lemma 6, K, A, B, p satisfy (14) and F c G p  x SO(4) is a 
discrete subgroup. If F were contained in {0} x SO(4), M would not be compact. 
Therefore F contains Fm,(2, p for some (2~SO(4) and some positive integer m, 
which completes the proof. 
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