Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Logic Seminar - Anush Tserunyan

math_sculpture
October 28, 2014
1:50 pm - 2:50 pm
Math Tower 154

Title: Finite generating partitions for continuous actions of countable groups

Speaker: Anush Tserunyan (UIUC)

Abstract: Let a countable group G act continuously on a Polish space X. A countable Borel partition P of X is called a generator if the set of its translates {gA : g in G, A in P} generates the Borel sigma-algebra of X. For G=Z, the Kolmogorov-Sinai theorem gives a measure-theoretic obstruction to the existence of finite generators: they don't exist in the presence of an invariant probability measure with infinite entropy. It was asked by B. Weiss in the late 80s whether the nonexistence of any invariant probability measure guarantees the existence of a finite generator. We show that the answer is positive for an arbitrary countable group G and sigma-compact X (in particular, for locally compact X). We also show that finite generators always exist for aperiodic actions in the context of Baire category (i.e. allowing ourselves to disregard a meager set), thus answering a question of A. Kechris from the mid-90s.