Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Ergodic Theory/Probability Seminar - Nyima Kao

Nyima Kao
May 31, 2018
3:00 pm - 4:00 pm
Math Tower 154

Title: Unique Equilibrium States for Geodesic Flows on Surfaces without Focal Points

SpeakerNyima Kao (University of Chicago)

Abstract: It is well-known that for compact uniformly hyperbolic systems Hölder potentials have unique equilibrium states. However, it is much less known for non-uniformly hyperbolic systems. In his seminal work, Knieper proved the uniqueness of the measure of maximal entropy for the geodesic flow on compact rank 1 non-positively curved manifolds. A recent breakthrough made by Burns, Climenhaga, Fisher, and Thompson which extended Knieper's result and showed the uniqueness of the equilibrium states for a large class of non-zero potentials. This class includes scalar multiples of the geometric potential and Hölder potentials without carrying full pressure on the singular set. In this talk, I will discuss a further generalization of these uniqueness results, following the scheme of Burns-Climenhaga-Fisher-Thompson, to equilibrium states for the same class of potentials over geodesic flows on compact rank 1 surfaces without focal points. This work is an MRC project joint with Dong Chen, Kiho Park, Matthew Smith, and Régis Varão.