# Thomas Gregory

Faculty Emeritus

Ovalwood Hall 375

1680 University Dr

Mansfield, OH 44906

## Education

- PhD: Yale University (1977)

**Publications**:

T. Gregory, Simple Lie algebras with classical reductive null component, J. of Algebra 63 (1980), 484-493.

T. Gregory, A characterization of the contact Lie algebras, Proceedings of the American Mathematical Society 82 (1981), 505-511.

T. Gregory, On simple reducible Lie algebras of depth two, Proceedings of the American Mathematical Society 83 (1981), 31-35.

T. Gregory, On simple reducible depth-two Lie algebras with classical reductive null component, Proceedings of the American Mathematical Society 85 (1982), 318-322.

T.B. Gregory, A characterization of the general Lie algebras of Cartan type W(n:m). Lie Algebras and Related Topics, Madison (1988), Contemporary Mathematics, Volume 110 (1990), 75-78

G. Benkart and T.B. Gregory, Graded Lie algebras with classical reductive null component, Mathematische Annalen 285 (1989), 85-98.

G.M. Benkart, T.B. Gregory, J.M. Osborn, H. Strade and R.L. Wilson, Isomorphism classes of Hamiltonian Lie algebras. Lie Algebras, Madison (1987), Springer Lecture Notes in Mathematics 1373 (1989), 42-57

G.M. Benkart, T.B. Gregory, and M.I. Kuznetsov, On graded Lie algebras of characteristic three with classical reductive null component. The Monster and Lie Algebras, OSU Mathematical Research Institute Publications, Volume 7 (1998), 149 – 164

T.B. Gregory and M.I. Kuznetsov, On depth-three graded Lie algebras of characteristic three with classical reductive null component, Communications in Algebra, Vol. 33, no. 9, pp. 3339-3371, 2004.

G.M. Benkart, T. B. Gregory, and A. Premet, The Recognition Theorem for Graded Lie Algebras in Prime Characteristic, Memoirs of the American Mathematical Society, Volume 197, Number 920, 2009.

T. B. Gregory and M.I. Kuznetsov, Non-degenerate graded Lie algebras with a degenerate transitive subalgebra, Sovremennaya Matematica i yeyo Prilozhenia, Vol. 60, 2008, 57-69 (Russian), Journal of Mathematical Sciences, Vol. 161, No. 1, 2009, 57-69 (English).

D. M. Shaffer and T. B. Gregory, How Football Players Determine where to Run to Tackle other Players: A Mathematical and Psychological Description and Analysis, The Open Sports Sciences Journal, 2, 2009, 29-36.

**Synergistic Activities:**

Translator, for the American Mathematical Society

Judge, International Science and Engineering Fair, for the Chief of Naval Research

Instructor, Naval Reserve Center, Cleveland, OH

**Collaborators:**

Georgia M. Benkart, University of Wisconsin - Madison, Madison, Wisconsin

Michael I. Kuznetsov, Nizhny Novgorod State University, Nizhny Novgorod, Russia

Aleksandr Premet, University of Manchester, Manchester, England

**Graduate Advisor:**

George B. Seligman, Yale University, New Haven, Connecticut