Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Analysis and Operator Theory Seminar - Christoph Fischbacher

christoph
October 9, 2025
12:40 pm - 1:40 pm
Math Tower (MW) 154

Christoph Fischbacher
Baylor University

Title
Non-selfadjoint operators with non-local point interactions

Abstract
In this talk, I will discuss non-selfadjoint differential operators of the form
$i\frac{d}{dx}+V+k\langle \delta,\cdot\rangle$ and $-\frac{d^2}{dx^2}+V+k\langle \delta,\cdot\rangle$, where $V$ is a bounded complex potential. The additional term, formally given by $k\langle \delta,\cdot\rangle$, is referred to as ``non-local point interaction" and has been studied in the selfadjoint context by Albeverio, Cojuhari, Debowska, I.L. Nizhnik, and L.P. Nizhnik.

I will begin with a discussion of the spectrum of the first-order operators on the interval and give precise estimates on the location of the eigenvalues. Moreover, we will show that the root vectors of these operators form a Riesz basis. If the initial operator is dissipative (all eigenvalues have nonnegative imaginary part), I will discuss the possibility of choosing the non-local point interaction in such a way that it generates a real eigenvalue even if the potential is very dissipative.
After this, I will focus on the dissipative second order-case and show similar results on constructing realizations with a real eigenvalue.
Based on previous and ongoing collaborations with Matthias Hofmann, Andrés Lopez Patiño, Sergey Naboko, Danie Paraiso, Chloe Povey-Rowe, Monika Winklmeier, Ian Wood, and Brady Zimmerman.

For More Information About the Seminar