Ergodic Theory/Probability Seminar - Elliot Paquette

September 13, 2017
Thursday, September 14, 2017 - 3:00pm to 4:00pm
Math Tower 154
Elliot Paquette

Title: Distributional Lattices in Symmetric spaces.

SpeakerElliot Paquette (Ohio State University)

Abstract: A Riemannian symmetric space X is a Riemannian manifold in which it is possible to reflect all geodesics through a point by an isometry of the space. A lattice in such a space can be considered as a discrete subgroup G of isometries so that a Borel fundamental domain of the quotient space G/X has finite Riemannian volume. Lattices mirror the structure of the ambient space in many ways: for example, X is amenable if and only if the the ambient space is amenable. We introduce the notion of a distributional lattice, generalizing the notion of lattice, by considering measures on discrete subsets of X having finite Voronoi cells and certain distributional invariance properties. Non-lattice distributional lattices exist in any Riemannian symmetric space: the Voronoi tessellation of a stationary Poisson point process is an example. With an appropriate notion of amenability, the amenability of a distributional lattice is equivalent to the amenability of the ambient space. We give some open problems related to these processes and some pretty pictures.

S M T W T F S
 
 
 
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28