Topology, Geometry and Data Seminar - Eric Goubault & Jeremy Dubut

Image
math_sculpture
November 1, 2016
4:00PM - 5:00PM
Location
Cockins Hall 240

Date Range
Add to Calendar 2016-11-01 16:00:00 2016-11-01 17:00:00 Topology, Geometry and Data Seminar - Eric Goubault & Jeremy Dubut Title: Recent Advances in Directed Algebraic TopologySpeaker: Eric Goubault & Jeremy DubutAbstract: In directed algebraic topology, the object of study is topological spaces with a « preferred direction », modulo a form of homotopy equivalence that should respect this direction, i.e. not revert it. The idea originally appeared in computer science, in the study of concurrent and distributed processes during the early nineties, but the field of directed topology is now really about more general space-time phenomena.Some notions are not too difficult to translate from the undirected to the directed world, such a the equivalent of the fundamental groupoid, into the fundamental category. Still, some notions have long eluded us, and for some, still elude us even if we have some candidates. Among these, we will mention directed homology theories, directed homotopy equivalences, and some elements of classification of directed spaces.In this talk, we begin by introducing the basic notions of directed topology, and show that in the simple case of non-positively curved spaces, they are not too different from the classical undirected case. For more general spaces, classification is more intricate, and for that matter, we introduce a directed homology theory, which in spirit looks like both non-abelian homology (in that we use natural systems of abelian groups), and persistent homology (in that these abelian groups are seen as evolving along some base category). We will end up by some conjectures on a "directed homotopy hypothesis", if time permits.Seminar URL: http://www.tgda.osu.edu/tgda-seminar.html Cockins Hall 240 Department of Mathematics math@osu.edu America/New_York public
Description

Title: Recent Advances in Directed Algebraic Topology

Speaker: Eric Goubault & Jeremy Dubut

Abstract: In directed algebraic topology, the object of study is topological spaces with a « preferred direction », modulo a form of homotopy equivalence that should respect this direction, i.e. not revert it. The idea originally appeared in computer science, in the study of concurrent and distributed processes during the early nineties, but the field of directed topology is now really about more general space-time phenomena.

Some notions are not too difficult to translate from the undirected to the directed world, such a the equivalent of the fundamental groupoid, into the fundamental category. Still, some notions have long eluded us, and for some, still elude us even if we have some candidates. Among these, we will mention directed homology theories, directed homotopy equivalences, and some elements of classification of directed spaces.

In this talk, we begin by introducing the basic notions of directed topology, and show that in the simple case of non-positively curved spaces, they are not too different from the classical undirected case. For more general spaces, classification is more intricate, and for that matter, we introduce a directed homology theory, which in spirit looks like both non-abelian homology (in that we use natural systems of abelian groups), and persistent homology (in that these abelian groups are seen as evolving along some base category). We will end up by some conjectures on a "directed homotopy hypothesis", if time permits.

Seminar URLhttp://www.tgda.osu.edu/tgda-seminar.html

Events Filters: