Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Analysis and Operator Theory Seminar - Vladimir Eiderman

photo of Vladimir Eiderman
September 24, 2019
2:00 pm - 3:00 pm
Cockins Hall 240

Title: A "rare" plane set with Hausdorff dimension 2

Speaker: Vladimir Eiderman (Indiana University)

Abstract: We prove that for every at most countable family $\{f_k(x)\}$ of real functions on $[0,1)$ there is a single-valued real function $F(x)$, $x\in[0,1)$, such that the Hausdorff dimension of the graph $\Gamma$ of $F(x)$ equals 2, and for every $C\in\mathbb{R}$ and every $k$, the intersection of $\Gamma$ with the graph of the function $f_k(x)+C$ consists of at most one point. We also construct a family of functions of cardinality continuum and a function $F$ with similar properties.

Events Filters: