Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Analysis/Operator Theory and Combinatorics/Probability Joint Seminar

Joel Lebowitz
April 25, 2014
2:45 pm - 3:40 pm
Cockins Hall 240

Title: Central Limit Theorems and Lee-Yang Zeros

SpeakerJoel Lebowitz, Rutgers University

Seminar Type:  Analysis & Operator Theory and Combinatorics & Probability joint seminar

Abstract: Let p(n; A_N) be the probability that there are exactly n objects in the set A_N with p(N; A_N) >0 and p(n;A_N) =0 for n>N: A_N can be a region in R^d or just a set of K points,eg a subset of Z^d or the edges of a graph, only N of which can be occupied. Define the generating function P(z:N)=Sum{p(n;A_N)z^n}. Consider now the fluctuations in the number of particles in A_N.I will describe sufficient conditions on the location of the (Lee-Yang) zeros of P(z:N) in the complex z-plane to yield a central limit theorem, or even a local central limit theorem for these fluctuations when N and the Variance of the number of particles in A_N goes to infinity. The main part of the talk will consist of applications to statistical mechanical problems (where the location of the zeros determines phase transitions in macroscopic systems), determinantal point processes ( such as the distribution of eigenvalues in some random matrices, an extension of earlier work with O. Costin) and graph counting polynomials (current joint work with B. Pittel, D. Ruelle and E. Speer).

Events Filters: