Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Lie superalgebra generalizations of the Jaeger-Kauffman-Saleur invariant

The Golden Hourglass by Craig Schaffer
April 4, 2024
1:50 pm - 3:00 pm
MA 105

Title:  Lie superalgebra generalizations of the Jaeger-Kauffman-Saleur invariant

Speaker:  Micah Chrisman (The Ohio State University - Marion Campus)

Speaker's URL:  https://math.osu.edu/people/chrisman.76

Abstract:  Jaeger-Kauffman-Saleur (JKS) identified the Alexander polynomial with the $U_q(\mathfrak{gl}(1|1))$ quantum invariant of classical links and extended this to a 2-variable invariant of links in thickened surfaces. Here we generalize this story for every Lie superalgebra of type $\mathfrak{gl}(m|n)$. First, we define a $U_q(\mathfrak{gl}(m|n))$ Reshetikhin-Turaev invariant for virtual tangles. When $m=n=1$, this recovers the Alexander polynomial of almost classical knots, as defined by Boden-Gaudreau-Harper-Nicas-White. Next, an extended $U_q(\mathfrak{gl}(m|n))$ Reshetikin-Turaev invariant of virtual tangles is obtained by applying the Bar-Natan Zh-construction. This is equivalent to the 2-variable JKS-invariant when $m=n=1$, but otherwise our invariants are new whenever $n>0$. Furthermore, in contrast with the classical case, the virtual and extended $U_q(\mathfrak{gl}(m|n))$ invariants are not entirely determined by the difference $m-n$. For example, the invariants from $U_q(\mathfrak{gl}(2|0))$ (i.e. the classical Jones polynomial) and $U_q(\mathfrak{gl}(3|1))$ are distinct, as are the extended invariants from $U_q(\mathfrak{gl}(1|1))$ and $U_q(\mathfrak{gl}(2|2))$. Further applications and conjectures based on calculations will be discussed. This is joint work (in progress) with Anup Poudel.

URL associated with Seminar:  https://www.asc.ohio-state.edu/math/vqss/

Events Filters: