Logic Seminar - Sean Walsh

March 27, 2018
Tuesday, April 10, 2018 - 1:45pm to 2:45pm
University Hall 051
math_sculpture

Title: Realizability Semantics for Quantified Modal Logic

Speaker: Sean Walsh (UCLA, Dept. of Philosophy)

Abstract: In 1985, Flagg produced a model of first-order Peano arithmetic and a modal principle known as Epistemic Church’s Thesis, which roughly expresses that any number-theoretic function known to be total is recursive. In some recent work ([1]), this construction was generalized to allow a construction of models of quantified modal logic on top of just about any of the traditional realizability models of various intuitionistic systems, such as fragments of second-order arithmetic and set theory. In this talk, we survey this construction and indicate what is known about the reduct of these structures to the non-modal language.

References: [1] B. G. Rin and S. Walsh. Realizability semantics for quantified modal logic: Generalizing Flagg’s 1985 construction. The Review of Symbolic Logic, 9(4):752–809, 2016.

 

S M T W T F S
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30