Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

The OSU-OU Ring Theory Seminar

The Golden Hourglass by Craig Schaffer
April 9, 2021
3:00 pm - 4:00 pm
Zoom (email cosmin@math.osu.edu for link)

Speaker:  Engin Buyukasik (Izmir Institute of Technology)

Abstract:  A right module M is called direct-injective (or C2) if every submodule isomorphic to a summand of M is itself a summand. Dually, a module M is called direct-projective (or D2) if for every submodule N of M with M/N isomorphic to summand of M, then N is a summand of M. Recently, in a series of papers “simple” versions of the aforementioned modules have been investigated ([3], [4], [5]). These modules are termed as “simple-direct-injective” and “simple-direct-projective,” respectively.
In this talk, we shall discuss the structure of these modules over certain rings including the ring of integers. Besides, it will be shown that the rings whose simple-direct-injective right modules are simple-direct-projective are exactly the left perfect right H-rings, and that, for a commutative Noetherian ring, simple-direct-projective modules are simple-direct-injective if and only if simple-direct-injective modules are simple-direct-projective if and only if the ring is Artinian. These results are recently appeared in [1].

References
[1] B¨uy¨uka¸sık, E., Demir, O., Diril, M. (2021). On simple-direct modules. ¨ Comm. Algebra 49:864-876.
[2] Camillo, V. (1978). Homological independence of injective hulls of simple modules over commutative rings, Comm. Algebra 6:1459-1469.
[3] Camillo, V., Ibrahim, Y., Yousif, M., Zhou, Y. (2014). Simple-direct-injective modules, J. Algebra 420:39-53.
[4] Ibrahim, Y., Ko¸san, M. T., Quynh, T. C., Yousif, M. (2016). Simple-Direct-Projective Modules. Comm. Algebra 44:5163-5178.
[5] Ibrahim, Y., Ko¸san, M. T., Quynh, T. C., Yousif, M. (2017). Simple-direct-modules. Comm. Algebra 45:3643-3652.

Events Filters: