Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Properness of Hilbert modular eigenvarieties

The Golden Hourglass by Craig Schaffer
March 1, 2021
4:15 pm - 5:15 pm
email organizers for Zoom link

Speaker:  Lynnelle Ye (Stanford University)

Title:  Properness of Hilbert modular eigenvarieties

Speaker's URL:  https://lynnelle.github.io/

Abstract:  Can a family of finite-slope modular Hecke eigenforms lying over a punctured disc in weight space always be extended over the puncture? This was first asked by Coleman and Mazur in 1998 and settled (in the affirmative) by Diao and Liu in 2014 using deep, powerful Galois-theoretic machinery. We will discuss a generalization of this result to Hilbert modular eigenvarieties for totally split primes. We do not use Diao-Liu's method. Instead we adapt an earlier method of Buzzard and Calegari based on elementary properties of overconvergent modular forms, building on recent work of Ren-Zhao for the boundary of weight space and Hattori for algebraic weights.

URL associated with Seminar
https://research.math.osu.edu/numbertheory/

Events Filters: