Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Ring Theory Seminar - S. K. Khanduja

Ring Theory Seminar
June 17, 2019
4:15 pm - 5:15 pm
Math Tower 154

Title: A walk through integrally closed domains and their applications in Number Theory

Speaker: S. K. Khanduja (Indian Institute of Science Education and Research, Mohali, India)

Abstract: Let $R$ be an integrally closed domain and $\theta$ be an element of an integral domain containing $R$ with $\theta$ integral over $R$ and $F(x)$ be the minimal polynomial of $\theta$ over the quotient field of $R$. It is an important problem to determine some necessary and sufficient criterion to be satisfied by $F(x)$ so that $R[\theta]$ is an integrally closed domain. This problem was initiated by Dedekind in 1878. In this lecture, we discuss such a criterion when $R$ is a valuation ring. We shall also give some applications of this criterion for algebraic number fields and derive necessary and sufficient conditions involving only the primes dividing $a,b,m,n$ for $\mathbb{Z}[\theta]$ to be integrally closed when $\theta $ is a root of an irreducible trinomial $x^n +ax^m +b$ with coefficients from the ring $\mathbb{Z}$ of integers.

Our results led us to prove in 2017-18 the converse of a well known theorem of Algebraic Number theory which says that if $K_1,K_2$ are algebraic number fields with coprime discriminants, then $K_1, K_2$ are linearly disjoint over the field of rational numbers and $A_{K_1} A_{K_2}$ is integrally closed, $A_{K_i}$ being the ring of algebraic integers of $K_i$. The converse will be discussed in a more general set up of arbitrary valuation rings.

Events Filters: