Colloquium - Alexander Olevskii

Colloquium
Thu, September 5, 2019
4:15 pm - 5:15 pm
Cockins Hall 240

Title: Direct Translates in Function Spaces

Speaker: Alexander Olevskii

Abstract: Let $X$ be a Banach function space on $\mathbb{R}$. Does there exist a function $f \in X$ and a uniformly discrete sequence $\Lambda \subset \mathbb{R}$ such that the damily of translates

$$\{f(t-\lambda)\}, \lambda \in \Lambda,$$

spans the whole space $X$?

I will present a survey on the subject and discuss the last results joint with Alexander Ulanovskii.

Filed in: