
Title: Direct Translates in Function Spaces
Speaker: Alexander Olevskii
Abstract: Let $X$ be a Banach function space on $\mathbb{R}$. Does there exist a function $f \in X$ and a uniformly discrete sequence $\Lambda \subset \mathbb{R}$ such that the damily of translates
$$\{f(t-\lambda)\}, \lambda \in \Lambda,$$
spans the whole space $X$?
I will present a survey on the subject and discuss the last results joint with Alexander Ulanovskii.